PALÉOBIOLOGIE

ISSN 1661-5468

VOL. 30, N° 2, 2011

The Oppeliidae of the Acanthicum Zone (Upper Kimmeridgian) from Mount Crussol (Ardèche, France): ontogeny, variability and dimorphism of the genera *Taramelliceras* and *Streblites* (Ammonoidea)

Cyril BAUDOUIN^{1*}, Patrick BOSELLI^{2*} & Didier BERT^{3*}

Abstract

The Kimmeridgian outcrops of the Mount Crussol (in Ardèche), already long known for their abundant ammonites, contain many Oppeliidae. The study of the Acanthicum Zone (Upper Kimmeridgian) enables us to conclude that the microconchs of *Taramelliceras compsum* (OPPEL) and *Streblites weinlandi* (OPPEL) correspond to forms previously described by the authors as *Glochiceras (Lingulaticeras) crenosum* QUENSTEDT and *Creniceras dentatum* (REINECKE). The study of a significant sample from a precise horizon leads to treat both *T. compsum* (OPPEL) and *T. pseudoflexuosum* (FAVRE) as two morphological elements from the same paleobiological species. This is the same for *S. weinlandi* (OPPEL) and *S. levipictus* (FONTANNES), which are morphologically very close. Finally, studying the genera's variability highlights mechanisms underlying it (heterochrony of the development and "laws" of covariation).

Keywords

Ammonoidea; Oppeliidae; Taramelliceras; Streblites; Ochetoceras; Upper Kimmeridgian (Upper Jurassic); Crussol, Ardèche (France).

Résumé

Les Oppeliidae de la zone à Acanthicum (Kimméridgien supérieur) de la montagne de Crussol (Ardèche, France): ontogenèse, variabilité et dimorphisme des genres *Taramelliceras* et *Streblites* (Ammonoidea).- Les affleurements du Kimméridgien de la montagne de Crussol (Ardèche), bien connus pour leur richesse en ammonites depuis longtemps, contiennent en particulier une abondante faune d'Oppeliidae. Leur étude pour la zone à Acanthicum (Kimméridgien supérieur) permet d'établir que les microconques de *Taramelliceras compsum* (OPPEL) et *Streblites weinlandi* (OPPEL) correspondent à des formes décrites précédemment par les auteurs comme des représentants respectifs de *Glochiceras (Lingulaticeras) crenosum* QUENSTEDT et *Creniceras dentatum* (REINECKE). L'étude d'un échantillon important provenant d'un horizon restreint conduit également à considérer *T. compsum* (OPPEL) et *T. pseudoflexuosum* (FAVRE) comme deux expressions morphologiques de la même espèce paléobiologique. Il en est de même pour *S. weinlandi* (OPPEL) et *S. levipictus* (FONTANNES), qui sont de morphologies très proches. Enfin, l'étude de la variabilité de ces genres permet de mettre en évidence les mécanismes qui la sous-tendent (hétérochronies du développement, et « lois » de covariation).

Mots-clés

Ammonoidea; Oppeliidae; Taramelliceras; Streblites; Ochetoceras; Kimméridgien supérieur (Jurassique supérieur); Crussol, Ardèche (France).

I. INTRODUCTION

The historical site of the Mount Crussol (Fig. 1 and 2) has provided many Kimmeridgian ammonites to the previous authors, with a significant part constituted by the representatives of the family Oppeliidae DOUVILLÉ, 1890. This family was particularly studied by DUMORTIER & FONTANNES (1876) and then FONTANNES (1879). Many species of the genera *Taramelliceras* DEL CAMPANA, 1904, *Streblites* HYATT, 1900, *Creniceras* MUNIER-CHALMAS, 1892, *Glochiceras* HYATT, 1900 and *Ochetoceras* HAUG, 1855 were described in their

monographs, but in a very typological way and without a very accurate stratigraphic calibration because of their ancient collection (no bed-by-bed tracking). Since then, several works have highlighted the importance of the intraspecific variability within the Oppeliidae from various ages (HÖLDER, 1955; PALFRAMAN, 1966), and the existence of a probably sexual dimorphism for that family (PALFRAMAN, 1966; MAKOWSKI, 1962; ZIEGLER, 1974; QUEREILHAC, 2009; KEUPP & RIEDEL, 2009). In the main case of *Taramelliceras*, HÖLDER (1955) brought together different species in large morphological and stratigraphic groups illustrating the polymorphism of this

¹ 79, rue Pierre Julien, F-26200 Montélimar, France; cyril.baudouin@gmail.com

² 57 bis, avenue des Patriotes, F-26300 Bourg-de-Péage, France; pboselli@wanadoo.fr

³ Université de Bourgogne, Laboratoire Biogéosciences, UMR CNRS 5561, 6 bd Gabriel, F-21000 Dijon, France; paleo-db@orange.fr.

^{*} Groupe d'étude en Paléobiologie et biostratigraphie des Ammonites (G.P.A), F-04170 La Mure-Argens, France.

Fig. 1: Geographic setting and simplified geological map of the Crussol area.

genus. This applies to the broad group of *Taramelliceras* compsum (OPPEL, 1863) at the Upper Kimmeridgian. In genus *Streblites*, ZIEGLER (1974) recognized some microconchs corresponding to forms assigned to the species "*Creniceras dentatum*" (REINECKE, 1818); he noted that the stratigraphic range of genus *Streblites* coincides exactly with that of "*C. dentatum*" (REINECKE).

The recent harvest (C.B. & P.B.) of many Oppeliidae, done with a good stratigraphic tracking in the lower part of the Upper Kimmeridgian in Mount Crussol, now allows us to consider their paleontological review for a specific level of the Acanthicum Zone (Upper Kimmeridgian) taking into account the intraspecific variability and modern concept of the species in paleontology. The biostratigraphic framework used in this work (Fig. 3) resumes the Kimmeridgian standard zonation of the Submediterranean realm developed by the *French Group for the Study of the Jurassic* (HANTZPERGUES *et al.*, 1997), completed and updated with the works of SCHWEIGERT (1999) and BAIER & SCHWEIGERT (2001).

II. GEOLOGICAL AND BIOSTRATIGRAPHICAL SETTING

The historic area of Mount Crussol is located in Ardèche, on the western flank of the Rhône Valley down south of the Rhône-Isère confluence, just across Valence city (Drôme, France). This mount, rising up to 380 m hight is a small calcareous massif surrounded by Quaternary alluvium of the great plain of Valence (Fig. 1). This site has long been known for its fossils abundance, and numerous Jurassic outcrops dating from Toarcian to

Fig. 2: Localisation of the outcrop sections of Mount Crussol (from ATROPS, 1982, p. 276). The Mallet quarry is F1.

Iges	Mediterrane (Southern Sp	ean province ain, NE Italy)	Sul (Northern Spa	omediterranean provi ain, SE France, Swab	nce ia-Franconia)
Substa	Zones	Subzones and horizons	Zones	Subzones	Horizons
				Ulmense	Rebouletianum Hoelderi Zio-Wepferi
eridgian	Beckeri/ Pressulum		Beckeri	Setatum	- Ornatum - Minutum
· Kimm				Subeumela	- Kiderleni Pedinopleura
Upper	Cavouri	·	Pseudomutabilis		
	Compsum/ Acanthicum	Heimi Loryi Longispinum	Acanthicum		
	Divisum/	Uhlandi	Division	Uhlandi	Doldonum
_	Herbichi	Divisum	Divisum	Divisum	Baiderum
ridgiar		Stenonis		Lothari	Perayensis Semistriatum
meı	Strombecki		Hypselocyclum		Discoidale
Kim		Raschii		Hippolytense	Hippolytense Lussasense
ower	Platynota	Trenerites		Guilherandense	Guilherandense Thieuloyi
	(Desmoides) Silenum		Platynota	Desmoides	Desmoides Enayi
				Polygyratus	Amoeboceras

Fig. 3: Zonation of the Kimmeridgian (from HANTZPERGUES et al., 1997).

Tithonian can be observed. However the massif bulk is made of limestones and marls from the Oxfordian and the Kimmeridgian stages. Thanks to many old quarries as well as natural outcrops, the sequence of these levels can be observed (Fig. 2). The Jurassic of Mount Crussol has been the subject of numerous works done a long time ago (SAUTIER, 1854; LORY, 1860; OPPEL, 1865; HUGUENIN, 1874; DUMORTIER & FONTANNES, 1876; FONTANNES, 1879; RICHE & ROMAN, 1921; ROMAN, 1950 - see HÖLDER & ZIEGLER, 1959 for a complete biography) and more recently by ATROPS (1982) who focused his research on the Lower Kimmeridgian.

The log sections given by ATROPS (1982, p. 275-291, table 46-47) are a valuable and indispensable basis in the study of the Kimmeridgian of the Mount Crussol.

However, the sections he published do not exceed the top of the Divisum Zone. In our work, the most recent levels of those sections were completed using the same numbering (Fig. 4 and 5). According to ATROPS, the Acanthicum Zone (and thus the base of Upper Kimmeridgian) starts from bed No. 175, but beds No. 175 to 178 form a very thick and currently inaccessible set that cannot be studied in our work. The Acanthicum Zone continues at least to the bed No. 197, but its upper limit still has to be clarified.

The Oppeliidae studied in this work are mainly from the orderly working of beds No. 193 and 195 which form a thin and easily accessible bundle containing abundant fauna. These levels are particularly visible around spot

Fig. 4: Section of the Acanthicum Zone of Mount Crussol.

Fig. 5: Outcrop section of the Acanthicum Zone of the Mallet quarry.

No. 405 and at the top of the great Mallet quarry (Fig. 2, 4-5). Oppeliidae and Aspidoceratidae are predominant in the ammonite fauna of those beds (Fig. 6 and 7): Oppeliidae such as Taramelliceras compsum (OPPEL, 1863) ([M] & [m]), Streblites weinlandi (OPPEL, 1863) ([M] & [m]), Ochetoceras canaliferum (OPPEL, 1863), and Aspidoceratidae: Aspidoceras acanthicum (OPPEL, 1863) (Pl. XI, fig. 6), Orthaspidoceras lallierianum (D'ORBIGNY, 1849) (Pl. XII, fig 8), Sutneria cyclodorsata (MOESCH, 1867) (Pl. XII, fig. 2). There are also Nebrodites hospes (NEUMAYR, 1873) (Pl. XI, fig. 8), Nebrodites gr. agrigentinus (GEMMELLARO, 1872) (Pl. XII, fig. 1), representatives of the genus Discosphinctoides OLORIZ, 1978 (Pl. XI, fig. 4, 5; Pl. XII, fig. 5), and rarely Aulacostephanus phorcus (FONTANNES, 1876) (Pl. XII, fig. 3), Phylloceras praeposterium (FONTANNES, 1875) (Pl. XI, fig. 7), P. aff. saxonicum NEUMAYR, 1871 (Pl. XI, fig.9), Holcophylloceras polyolcum (BENECKE, 1866) (Pl. XII, fig. 7), Ptychophylloceras ptychoicum (QUENSTEDT, 1845) (Pl. XI, fig. 11), Lytoceras polycyclum NEUMAYR, 1873 (Pl. XII, fig. 6), and there are also some nautilus with sinuous septa [Pseudaganides cf. pseudaganiticus (SCHLOTHEIM, 1820)] (Pl. XI, fig. 10). A few belemnites, gastropods and bivalves complete the fauna.

Fig. 6: The ammonites' genera in bed No. 193 (N=212).

III. GOALS AND METHODS

The choice of a "paleobiological" approach

Species concept in paleontology has undergone significant changes since the first part of the twentieth century when the "typological species" was still largely used. Since the 1950s, this concept has been gradually supplanted by other approaches incorporating more biological and evolutionary criteria (eg TINTANT, 1952, 1963, 1965, 1966, 1969, 1980; CALLOMON, 1963; WESTERMANN, 1966; MAYR, 1974, 1982; KENNEDY & COBBAN, 1976; MAHÉ & DEVILLERS, 1983; CHALINE & MARCHAND, 2002; MARCHAND & DOMMERGUES, 2008; CHANDLER & CALLOMON, 2009; BERT, 2009). As the interfertility criterion is inaccessible in paleontology, a researcher wishing to study a sample of ammonites in a way "as biologically as possible" (here "paleobiological") must base his study on a large-scaled sample in an isochronously and geographically restricted area.

In case of an interbreeding population the variability is not at random and it is often close to a Gaussian distribution. When a sample shows this kind of continuity, it can be reasonably considered (parsimonious hypothesis) as part of a population of individuals belonging to the same specific entity (and thus a single taxon) rather than a multitude of taxa in which every slightly different individual begins the designation of a new "species" name. This approach is particularly convenient if the intermediaries between various possible morphotypes are recognized (intraspecific polymorphism). Thus, even if at first glance the paleobiological approach seems to be an apparent loss of signal in the morphological information, it actually has more benefits than a strictly typological approach: it can provide a coherent explanation for the strong variability observed within some fossil samples (disparity), especially within the ammonites (TINTANT, 1976; KENNEDY & COBBAN, 1976; MORARD & GUEX, 2003; COURVILLE & CRÔNIER, 2003, 2005; CHANDLER & CALLOMON, 2009; BERT, 2004, 2009), it can provide credible models explaining their evolutionary trends (WESTERMANN, 1966; DOMMERGUES et al., 1986; CHALINE & MARCHAND, 2002; GOULD, 2002; MARCHAND & DOMMERGUES, 2008), or it can identify morphological features that can be used as biochronologic markers (eg MARCHAND, 1986; BONNOT, 1995; BERT, 2004; BERT & DELANOY, 2009; BERT et al., 2009) and which may otherwise be entirely unnoticed (BERSAC & BERT, work in progress).

Applied here, the paleobiological approach enables a new understanding of the intraspecific variability mechanisms and their extent for the Oppeliidae at the base of the Upper Kimmeridgian.

Fig. 7: The ammonites' genera in bed No. 195 (N=176).

Biometrics

To provide the basis for a paleobiological study, biometric measurements found in Tables 1-5 (cf. Annex) were performed using a specific protocol (Fig. 8). Traditional measurements of diameter (*D*), size of umbilicus (*U*), height (*H*) and width (*W*) of the whorls were generally made at three or four different diameters. The angle α is measured between the largest diameter and the studied diameter, when in bold it locates the beginning of the adult body chamber if it is present and if the last suture lines are visible. Adults *Taramelliceras* are recognized as secondary ribs that were fading and then disappeared, and adults *Streblites* are recognized as a tabular ventral area that was appearing.

For *Taramelliceras* macroconchs (ribbed and tuberculate) and *Ochetoceras* (ribbed only), the parameters *Npr/2*, *Nsr/2* and *Nt/2* respectively indicate the number of primary ribs, secondary ribs and of tubercles at half turn in function of diameter. In contrast, the weakly developed and very thin ribs of *Streblites* macroconchs and of microconchs (of *Taramelliceras* and *Streblites*) can hardly ever be seen, and could not be counted.

The ammonite material is actually housed in the collections of the members of the *Groupe de recherche en Paléontologie et biostratigraphie des Ammonites (G.P.A* – head office at *F-04170 La Mure-Argens, France)* and it is actually available for consultation to its collectors.

Fig. 8: Explanatory diagram of measurements on the specimens studied.

IV. PALAEONTOLOGICAL AND SYSTEMATIC STUDY

Suborder Ammonitina HYATT, 1889 Superfamily Haploceratoidea ZITTEL, 1884 Family Oppeliidae DOUVILLÉ, 1890 Subfamily Taramelliceratinae SPATH, 1928

?

?

Genus *Taramelliceras* DEL CAMPANA, 1904 Type species : *Ammonites trachinotus* OPPEL, 1863

Taramelliceras compsum (OPPEL, 1863)

Pl. I, fig. 1-4, 7; Pl. II, fig. 3-10; Pl. III, fig. 1-7; Pl. IV, fig. 1-8; Pl. V, fig. 1-6; Pl. VI, fig. 1-6; Pl. VII, fig. 1-11; Pl. VIII, fig. 1-10

Synonymy

?

- Morph *compsum* [M] (= macroconch)
 - 1849. Ammonites flexuosus costatus nov. ssp. -QUENSTEDT, pl. 9, fig. 1, 4.
 - 1863. *Ammonites compsus* nov. sp. OPPEL, p. 215, pl. 57, fig. 1.
 - 1863. Ammonites holbeini nov. sp. OPPEL, p. 213.
 - 1873. *Oppelia holbeini* (OPPEL, 1863). NEUMAYR, p. 166, pl. 33, fig. 1.
- ? 1875. *Ammonites flexuosus* MÜNSTER, 1830. FAVRE, pl. 1, fig. 13, 14.
- ? 1876. Ammonites (Oppelia) flexuosus MÜNSTER, 1830. FAVRE, pl. 3, fig. 6.
 - 1876. *Ammonites (Oppelia) holbeini* OPPEL, 1863. -LORIOL, p. 37, pl. 3, fig. 6, 7.
- pars 1877. Ammonites (Oppelia) greenackeri MOESCH, 1865. - LORIOL, p. 44, pl. 5, fig. 3; non pl. 5, fig. 2.
 - 1877. Ammonites (Oppelia) holbeini OPPEL, 1863. -FAVRE, p. 31, pl. 2, fig. 11-12.
 - 1877. Ammonites (Oppelia) pseudoflexuosus nov. sp. -FAVRE, p. 29, pl. 2, fig. 9, 10 ; pl. 3, fig. 1.
 - 1878. *Oppelia compsa* (OPPEL, 1863). HERBICH, p. 150, pl. 5.
- ? 1878. *Oppelia kochi* nov. sp. HERBICH, p. 151, pl. 6, fig. 1, 2.
 - 1879. *Oppelia compsa* (OPPEL, 1863). FONTANNES, p. 34, pl. 5, fig. 1.
 - 879. *Oppelia franciscana* nov. sp. FONTANNES, p. 41, pl. 6, fig. 1.
 - 1879. *Oppelia holbeini* (OPPEL, 1863). FONTANNES, p. 37, pl. 5, fig. 3.
 - 1887. Ammonites flexuosus gigas QUENSTEDT, 1849. QUENSTEDT, p. 909, pl. 98, fig. 8-12.
- pars 1887. Ammonites flexuosus crassatus nov. ssp. -QUENSTEDT, p. 912, pl. 99, fig. 1?, 2, 3?, 5?, non pl. 99, fig. 4 nec fig. 6-8.
- ? 1893. Neumayria pseudoflexuosa (FAVRE, 1877). -CHOFFAT, p. 23, pl. 16, fig. 15-17.
 - 1896. *Oppelia compsa* (OPPEL, 1863). CANAVARI, p. 44, pl. 5, fig. 2.
- pars 1905. Taramelliceras pseudoflexuosus (FAVRE, 1877). - DEL CAMPANA, p. 49, pl. 1, fig. 12, 13, non pl. 6, fig. 2, 3.
- non 1928. Taramelliceras aff. holbeini (OPPEL, 1863). -SPATH, pl. 14, fig. 14.
- ? 1927-1933. Taramelliceras cf. compsum (OPPEL, 1863). -SPATH, pl. 18, fig. 10.
 - 1934. *Oppelia (Taramelliceras) holbeini* (OPPEL, 1863). DACQUÉ, pl. 32, fig. 11.
 - 1938. *Oppelia holbeini* (OPPEL, 1863). TRAUTH, pl. 11, fig. 23.
 - 1941. Oppelia holbeini (OPPEL, 1863). DISLER, pl. 14, fig. 4.

- 1955. *Taramelliceras* (*Taramelliceras*) compsum (OPPEL, 1863). - HÖLDER, p. 110, pl. 19, fig. 22.
- 1955. Taramelliceras (Taramelliceras) pseudoflexuosus (FAVRE, 1877). - HÖLDER, p. 117, pl. 19, fig. 23.
- ? 1955. Taramelliceras (Taramelliceras) pseudoflexuosum gracile nov. ssp. - HÖLDER, p. 110, pl. 19, fig. 24.
- ? 1966. Taramelliceras (Taramelliceras) compsum (OPPEL, 1863). - ANDELKOVIC, p. 27, pl. 6, fig. 1, 2, pl. 7, fig. 4, pl. 10, fig. 3, 7, pl. 24, fig. 1, pl. 26, fig. 1.
- ? 1966. Taramelliceras (Taramelliceras) pseudoflexuosum (FAVRE, 1877). - ANDELKOVIC, p. 28, pl. 3, fig. 2, pl. 6, fig. 3, 4.
- ? 1970. *Taramelliceras compsum* (OPPEL, 1863). -BANTZ, p. 28, pl. 1, fig. 2.
- ? 1978. Taramelliceras (Taramelliceras) compsum (OPPEL, 1863). - OLORIZ, p. 83, pl. 6, fig. 1-4.
- non 1979. Taramelliceras (Taramelliceras) compsum compsum (OPPEL, 1863). - SAPUNOV, p. 48, pl. 9, fig. 1, 2. ? 1979. Taramelliceras (Taramelliceras) compsum
 - 1979. Taramelliceras (Taramelliceras) compsum holbeini (OPPEL, 1863). - SAPUNOV, p. 49, pl. 9, fig. 3, 4.
 - 1979. Taramelliceras (Taramelliceras) franciscanum (FONTANNES, 1879). - SAPUNOV, p. 50, pl. 10, fig. 1 a, b; 2 a, b, 3.
- ? 1986. Taramelliceras (Taramelliceras) compsum (OPPEL, 1863). - SARTI, p. 496, pl. 2, fig. 1.
- non 1992. Taramelliceras (Taramelliceras) compsum (OPPEL, 1863). - FINKEL, p. 230, fig. 82.
 - 1993. Taramelliceras (Taramelliceras) compsum compsum (OPPEL, 1863) kochi morphotype (HERBICH, 1878). - SARTI, p. 60, pl. 3, fig. 2.
 - 1993. Taramelliceras (Taramelliceras) pseudoflexuosum (FAVRE, 1877). - SARTI, p. 63, pl. 4, fig. 3.
 - 1994. *Taramelliceras* (*Taramelliceras*) compsum (OPPEL, 1863). - SCHLEGELMILCH, p. 36, pl. 10, fig. 1, pl. 15, fig. 7.
 - 1994. Taramelliceras (Taramelliceras) pseudoflexuosus (FAVRE, 1877). - SCHLEGELMILCH, p. 36, pl. 9, fig. 5.
 - 2002. Taramelliceras (Taramelliceras) compsum compsum (OPPEL, 1863). - PAVIA & CRESTA, p. 215, fig. 146.
 - 2002. Taramelliceras (Taramelliceras) compsum holbeini (OPPEL, 1863). - PAVIA & CRESTA, p. 217, fig. 147, 148.
 - 2002. Taramelliceras (Taramelliceras) compsum kochi (OPPEL, 1863). - PAVIA & CRESTA, p. 219, fig. 146.

Morph crenosum [m] (= microconch)

- 1887. *Glochiceras crenosum* nov. sp. QUENSTEDT, p. 847, pl.92, fig. 32.
- pars 1958. Glochiceras (Lingulaticeras) crenosum (QUENSTEDT, 1958). - ZIEGLER, p. 136, pl. 13, fig. 10-11, 13-14, non fig. 12, 15.
 - 1994. Glochiceras (Lingulaticeras) crenosum (QUENSTEDT, 1958). - SCHLEGELMILCH, p. 54, pl. 16, fig. 11.

Remark: for a complete synonymies' list of the GEMMELLARO's work, refer to the revision of PAVIA & CRESTA (2002).

Lectotype: original figuration by OPPEL (1863), pl. 57, fig. 1a, b; lectotype deposited in the *Bayerische Staatssammlung für Paläontologie und historische Geologie*, Munich (cf. SARTI, 1986). A lectotype cast, seen by one of us (D.B.), from the *National Natural of History Museum* in Paris, is figured Pl. I, fig. 2.

Type locality: Swabian Jura (Württemberg), Germany. **Type stratum:** "Malm formation, Weissjura Delta".

Geographic distribution: *Taramelliceras compsum* (OPPEL, 1863), as considered in this work, is a species from the Mediterranean and Sub-Mediterranean realm: it was reported in Spain (OLORIZ, 1978), Italy (SARTI, 1986, 1993), Germany (Swabia and Franconia - HÖLDER, 1955), Switzerland (FAVRE, 1877), in Southeastern France (FONTANNES 1979; FAVRE, 1877; this work), and probably in Yugoslavia (ANDELKOVIC, 1966) and Bulgaria (SAPUNOV, 1979). It may also be found in Portugal (CHOFFAT, 1893) and India (Kachchh - SPATH, 1928).

Stratigraphic distribution: *Taramelliceras compsum* (OPPEL, 1863) appears in the lower part of the Acanthicum Zone in the Mount Crussol. The specimens studied in this work are exclusively from beds No. 193 and 195.

HÖLDER (1955), HANTZPERGUES *et al.* (1997) and SARTI (1993) also agreed *Taramelliceras compsum* (OPPEL, 1863) appears in the Acanthicum Zone, but its extension into the Upper Kimmeridgian varies according to the authors. In the sub-Mediterranean realm, HANTZPERGUES *et al.* indicated that this species can only be found in the lower part of the Pseudomutabilis Zone, while for HÖLDER it can be found in that whole zone in Germany. For SCHERZINGER (personal communication), the species is still present in the uppermost part of the Pseudomutabilis Zone in Swabia (SW Germany). In Italy (Mediterranean realm), it even spreads in the Beckeri Zone according to SARTI.

OLORIZ (1978) gives a much larger-scaled distribution for *Taramelliceras compsum* (OPPEL, 1863) in Spain, from the top of the Divisum Zone (Uhlandi Subzone) to the Lower Tithonian (Hybonotum Zone). However, such extension seems exaggerated related to the questionable membership to *T. compsum* (OPPEL) of the specimens figured by this author (1978, pl. VI, fig. 1-4) because of their poor preservation.

Material and dimensions (macroconchs [M], N=155; microconchs [m], N=41): see Tables 1 and 2 for macroconchs and microconchs respectively.

Ontogenesis

The macroconchs [M]

The specimens studied here show a subrectangular section of the whorls (Fig. 9), with a generally involute shell (U/D between 0.09 and 0.31, average of 0.16),

Fig. 9: Taramelliceras compsum (OPPEL, 1863) [M], whorl sections, × 1; a: specimen No. cru088, coll. BOSELLI; b: specimen No. crl026, coll. BAUDOUIN; c: specimen No. crl135, coll. BAUDOUIN; d: specimen No. crl136, coll. BAUDOUIN.

which is relatively compressed (W/D) between 0.24 and 0.38, average of 0.31) and with relatively high whorls (H/D between 0.42 and 0.62, average of 0.53; W/H between 0.45 and 0.78, average of 0.58). Adult specimens which can be recognized as their second ribs and sometimes their tubercles disappeared, have complete diameters ranging from 90 to 187 mm (maximum size observed in the specimen No. cru088a, Pl. XII, fig. 1). When complete, the living body chamber approximately occupies the last half whorl. Bivariate diagrams for the dimensional parameters growth of the shell (H, W and Uin function of diameter - Fig. 10, 11 and 12) show in all cases homogeneous scatters around the mean curve (with R^2 still very high >0.9) in every case. The growth of those parameters is isometric and harmonic, and corresponds to the relationship Y=bD.

The ornamentation consists of main ribs; they regularly polyfurcate inward the mid-flank at an inflection point, of peri-ventral clavis, and of small siphonal tubercles. The average number of ribs (Fig. 13 and 14) steadily increases to about 80 mm in diameter, and then decreases beyond that diameter. The number of tubercles increases more quickly and reaches its maximum at an average of D=70 mm (Fig. 15). Four stages can be described during the ontogenesis depending on the ornamentation:

- Stage 1 smooth: up to D=15 mm; macroconch and

Fig. 10: U=f(D) for *Taramelliceras compsum* (OPPEL, 1863); macroconchs are in black, microconchs are in grey. The triangle is for the lectotype.

Fig. 11: *W*=*f*(*D*) for *Taramelliceras compsum* (OPPEL, 1863).

Fig. 12: *H=f(D)* for *Taramelliceras compsum* (OPPEL, 1863).

microconch individuals are indistinguishable and neither shows any ornamentations [both clouds of points merge on bivariate diagrams of H, W and U=f(D)]. The coiling is relatively evolute at this stage (U/D between 0.25 and 0.35, H/D generally between 0.35 and 0.50); the whorl section is oval, high and relatively compressed with slightly rounded flanks. The umbilical wall is low, vertical, with a rounded edge.

- Stage 2 "pichleri" so named by its strong analogy with the Taramelliceras pichleri (OPPEL, 1863) ornamentation (Bimammatum Zone, Upper Oxfordian). From about D=15 mm the secondary ribs first appear (Fig. 13). They are all identical and first located near the latero-ventral edge of the shell, but they are gradually spreading toward the upper half of the flanks. The ribs are interrupted at the latero-ventral shoulder in a slight bulge but it is not a real tubercle. In parallel, small siphonal tubercles appear on the ventral rounded area; they are roughly equivalent to the number to secondary ribs. A smooth band separates that siphonal tubercles line from the latero-ventral bulged termination of the secondary ribs. Then, at D=20 mm, primary ribs appear near the umbilical edge on the lower half of the flanks (Fig. 14) and they are quite bulged and slightly flexuous. On the upper half of the flanks, primary and secondary ribs cannot be differentiated. Between two primary ribs the number of secondary ribs varies from 2 to 8, and generally the number of secondary ribs inserted between two primary ribs decreases as ammonites are growing. At D=20 mm, there are generally between 15 and 25 ribs per half-whorl in the upper half of flanks.

- Stage 3 "pseudoflexuosum": from 30 to 40 mm in diameter, tubercles indistinctly replace some primary or secondary ribs thickened terminations on the lateroventral edge. Their strength and numbers are highly variable and there are between 4 and 15 tubercles per half-whorl at D=50 mm (Fig. 15). Those tubercles are first small, round or slightly and radially elongated. They may either keep this bulliforme aspect (pseudoflexuosum morph), or they may grow in strength (sometimes very strongly in other specimens) and become elongated (claviform) in the coiling up direction and absorb the termination of 2 to 3 ribs bundles (morph compsum). The primary ribs are relatively flexuous and inclined forward in the flanks' lower half, and then sometimes they sharply bend at mid-flanks, where they may show a slight bulge before becoming radial or slightly concave on the flanks' upper half. Their number varies between 5 and 15 per half-whorl, or even more depending on the specimens (Fig. 14). In comparison with stage 2, the ribbing is generally thinner and denser. At D=40 mm there are generally between 25 and 35 ribs in the flanks' upper half, and between 30 and 50 at D=60 mm (Fig. 13).

- Stage 4: this stage approximately corresponds to the living body chamber of adult specimens (D>80 mm). Secondary ribs are getting strongly attenuated and then they disappear (Fig. 13), primary ribs (Fig. 14), and

Fig. 13: Number of secondary ribs in function of D for Taramelliceras compsum (OPPEL, 1863) [M].

Fig. 14: Number of primary ribs in function of D for Taramelliceras compsum (OPPEL, 1863) [M].

Fig. 15: Number of tubercles in function of D for Taramelliceras compsum (OPPEL, 1863) [M].

tubercles (Fig. 15) frequently (but not systematically) get attenuated as well. This stage is, in fact, quite variable: with specimens that become completely smooth at large diameters (specimens No. cru015, Pl. V, fig. 3, No. cru088a, Pl. VII, fig. 1), there are specimens whose tuberculation remains particularly strong (specimen No. cru076, Pl. VI, fig. 3).

The peristome, rarely preserved in macroconch specimens is sinuous with a slight ventral beak (specimen No. cru088a, Pl. VII, fig. 1).

The microconchs [m]

Taramelliceras Every compsum (OPPEL, 1863)microconch shows a "Glochiceras" type morphology with a small sized ornate shell (maximum size observed: D=37 mm, specimen No. cru060, Pl. VII, fig. 9). If the inner whorls of both dimorphs are identical up to D=15mm, the microconchs adult stage is always more evolute than the macroconchs' (Fig. 10) with a ratio U/D which grow from 0.25 to 0.35. In complete specimens, the adult stage is distinguished by the relative contraction of the living body chamber and the presence of jugal apophysis. As in macroconchs, the living body chamber is approximately half a whorl.

Bivariate diagrams drawn from the shell parameters (Fig. 10, 11 and 12) show that the average microconchs curves follows the allometric relationship of $Y=bD^a$ type.

- Stage 1 smooth: up to about D=15 mm, macroconchs

and microconchs show no discernible difference (see above).

- Stage 2 "crenosum": beyond D=15 mm, microconch specimens can strongly be differentiated from their macroconchs. The coil is getting much more evolute (Fig. 10), while the whorl's height and thickness growth is decreasing, with H/D between 0.37 and 0.43 and W/Dbetween 0.20 and 0.26 for D=35 mm. The umbilical wall is vertical, low, with a slightly rounded or angular edge. The whorls section is oval (W/H) between 0.50 and 0.75) with slightly rounded flanks and a convex ventral area. The ornamentation is absent or hardly noticeable, and it can almost exclusively be found only on the adult body chamber. When the ornamentation is visible, there are crenulations on the ventral area, often more strongly marked near the peristome, while on the flanks sometimes there are small falciform striations. Those striations are first inclined forward, next they form a bulge in the flanks' lower third part, and then they become strongly retroverted and concave in the flanks' upper part. At the first third of the flanks, the striations sometimes become bulges arranged along a very slightly marked furrow, and they determine a series of slightly marked depressions near the peristome.

The peristome shows well developed spatulate apophysis. They are often dug by a marked furrow in their first half. The furrow is located in the extension of the one which is sometimes visible on the body chamber. That furrow is bordered by a large rim on the inner side. Apophysies are often curved inward, and they sometimes slightly cover the preceding whorl.

Variability

Besides the distinction in two dimorphic macro- and microconchs, the variability in this sample focuses on the diameter of different appearing stages, the adult size, as well as on the ribbing and tubercles (macroconchs). Macroconchs show the greatest variations between individuals. All dimensional parameters also show some variations, especially regarding the global ornamentation strength, the umbilicus widening, and the whorl section relative thickness.

In macroconch dimorphs, stage 2 "pichleri" which precedes the appearance of latero-ventral tubercles, disappears from D=20 mm in some specimens (specimen No. crl018, Pl. II, fig. 10), while it may continue up to about D=35 mm (specimen No. crl020, Pl. II, fig. 4). The ribbing strength is also quite variable: secondary ribs are usually relatively spaced, large and thickened near the latero-ventral edge (No. crl020, Pl. II, fig. 4), but it can be thinner and denser in the slender forms (No. crl014, Pl. II, fig. 9). Stage 3 "pseudoflexuosum" shows an even greater variability, and its most striking effect is focused on the tubercles' density and persistence. In some slender specimens (morph pseudoflexuosum), the tubercles remain discrete, round or slightly elongated in the ribs' direction, before early disappearance (specimens No. crl026, Pl. III, fig. 1 at D=70 mm, No. cru024, Pl. V, fig. 1 at D=73 mm and No. cru078, Pl. VIII, fig. 1 at D=88 mm). Instead, other more robust specimens (morph compsum) show strongly enhanced tubercles which widen in the coiling direction. In those specimens the tuberculation process continues during ontogenesis (specimen No. crl024, Pl. II, fig. 6), and it can even be seen in stage 4 on the entire adult living body chamber (specimens No. cru030, Pl. V, fig. 5, No. cru076, Pl. VI, fig. 3, No. cru045, Pl. VI, fig. 6, and No. cru056, Pl. VIII, fig. 3). Many intermediaries connect these two extreme morphologies (eg the specimen No. crl024, Pl. II, fig. 6). The ornamentation strength and the coil aspect (more or less widening of the umbilicus) are directly related to the tubercles' strength. So, slender morphologies with weak and quickly decreasing tubercles have dense and weak ribs associated with a more involute coiling (U/D)relatively low between 0.10 and 0.12 for D>60 mm). In contrast, robust morphologies with strong and persistent tubercles have more pronounced and spaced ribs that last longer during ontogeny, they are also associated with a more evolute coiling (U/D greater between 0.15 and 0.16for D > 60 mm).

On the other hand, the high variability in tubercles' density is directly related to primary ribs' density, without any apparent links with the ornamentation strength. A parallel can be drawn between that phenomenon and a greater length in stage 2 and a less individualized stage

3, in that case the separation between both stages being very gradual and less obvious (specimen No. crl020, Pl. II, fig. 4).

When stage 4 is appearing, its diameter is generally linked to the more or less important extension of stage 3. Finally, slender specimens have an earlier and a longer stage 4 (the adult body chamber may even become smooth), and they have a larger adult size (D=187 mm for specimen No. cru088a, Pl. VII, fig. 1; D=168 mm for specimen No. cru035a, and D=180 mm for specimen No. cru027) than the most robust specimens (D=154 mm for specimen No. cru076, Pl. VI, fig. 3).

Microconch dimorphs are much less variable than the previous macroconchs because of their very discreet ornamentation and their few ontogenetic stages. The ornamentation is only visible on the adult body chamber and its variability mainly rests upon either the ventral crenulations' strength or its complete absence. Moreover, the tightening size of the adult body chamber depends on the specimens (H/D from 0.36 to 0.45 at D>20 mm). The shape of the apophysis terminal expansion may also change widely.

Differential diagnosis

Taramelliceras compsum (OPPEL, 1863) is different from *T. trachinotum* (OPPEL, 1863), a species from the Divisum Zone (top of Lower Kimmeridgian): its subrectangular whorl section is much more compressed, its venter is much less rounded, and its tubercles are always much less strong and radially elongated (at equal diameter within the macroconchs).

Taramelliceras intersistens HÖLDER, 1955 is a species that can be found from the top of the Acanthicum Zone to the base of the Beckeri Zone (Upper Kimmeridgian). It was reported to the *T. compsum* (OPPEL) [M] group by HÖLDER (1955), though *T. intersistens* HÖLDER is different from the latter group as in its ornamentation, there are secondary ribs, that are thinner and much more forwardly inclined, and its tubercles are weaker.

Taramelliceras klettgovianum (WÜRTTEMBERG, 1866) is from the the Pseudomutabilis Zone (Upper Kimmeridgian), and it differs from *T. compsum* (OPPEL) [M] as there are more primary ribs and its secondary ribs are forwardly more inclined with weaker tubercles.

Taramelliceras platyconcha (GEMMELLARO, 1872) is different from *T. compsum* (OPPEL) [M] with its numerous and tight tubercles, its strong and dense primary ribs, and its much greater thickness (*W/D* close to 0.35 at D>100 mm). The species is found from the Divisum Zone (Lower Kimmeridgian) to the Cavouri Zone (= Pseudomutabilis Zone) (Upper Kimmeridgian) (cf. PAVIA & CRESTA, 2002).

Taramelliceras kochi (HERBICH, 1878), whose original figure (HERBICH, 1878, pl. 6, fig. 1, 2) is difficult to interpret, is a species with a status which had to be clarified (PAVIA & CRESTA, 2002); in literature, it is frequently read as a morphotype of *T. compsum* (OPPEL)

[M]. Compared with the specimens figured by SARTI (1993, pl. 3, fig. 2) and PAVIA & CRESTA (2002, fig. 149), none of the specimens here shows such an increasing density of the primary ribs and the tubercles on the adult body chamber. From our current knowledge, T. kochi (HERBICH) can not be integrated in the T. compsum (OPPEL) [M] variability field, and this species might rather be close to T. platyconcha (GEMMELLARO). The T. kochi (HERBICH) stratigraphic range is identical to T. compsum (OPPEL) [M] one (cf. PAVIA & CRESTA, 2002). Taramelliceras erycinum (GEMMELLARO, 1871), whose holotype was refigured by PAVIA & CRESTA (2002), mainly differs from T. compsum (OPPEL) [M] with its more oval-shaped whorls section and the lack of true tubercles on the ventral area: the secondary ribs only show a slight thickening on the shell's latero-ventral edge. T. erycinum (GEMMELLARO) is reported from the upper part of the Divisum Zone (Lower Kimmeridgian) to the Acanthicum Zone (Upper Kimmeridgian), or up to the Pseudomutabilis Zone according to PAVIA & CRESTA (2002).

Taramelliceras subcallicerum (GEMMELLARO, 1872), whose holotype was refigured by PAVIA & CRESTA (2002, fig. 153), is different from *T. compsum* (OPPEL) [M] as its secondary ribs are systematically ending with a small tubercle; consequently those tubercles' number is much more important than in *T. compsum* (OPPEL) [M]. *T. subcallicerum* (GEMMELLARO) is usually considered as a probable major synonym of *T. oculatiforme* (DE ZIGNO, 1905) (SARTI, 1993; PAVIA & CRESTA, 2002), and it can be found from the Divisum Zone (Lower Kimmeridgian) up to the Acanthicum Zone (Upper Kimmeridgian).

Taramelliceras pugile (NEUMAYR, 1871) can be distinguished from *T. compsum* (OPPEL) [M] as its umbilicus is wider and the large siphonal and lateroventral tubercles rapidly emerged forming a rectangular whorl section. *Taramelliceras* of the *pugile* (NEUMAYR) group can be found from the Acanthicum Zone up to the Beckeri Zone, Subeumela Subzone (Upper Kimmeridgian).

Species, linked to the subgenus *Metahaploceras* SPATH, 1925 and which do not exceed the Divisum Zone (Lower Kimmeridgian) [*Taramelliceras* (*M.*) subnereus (WEGELE, 1929), *T.* (*M.*?) kobyi (CHOFFAT, 1893), *T.* (*M.*) rigidum (WEGELE, 1929), *T.* (*M.*) strombecki (OPPEL, 1857), *T.* (*M.*) nodosiusculum (FONTANNES, 1879), *T.* (*M.*) semibarbarum HÖLDER, 1955], can easily be distinguished from *Taramelliceras compsum* (OPPEL) [M] with their thinner ribbing and their fewer and weaker tubercles.

Discussion

Studying over 150 macroconch specimens from beds 193 and 195 in Mount Crussol enables us to assume that *Taramelliceras pseudoflexuosum* (FAVRE, 1877) is a junior synonym of *Taramelliceras compsum* (OPPEL, 1863). Indeed, both "morphospecies" show strictly identical inner whorls, the same ontogenetic stages, and they have the same stratigraphic range. *T. compsum* (OPPEL) [M] is mainly different from *T. pseudoflexuosum* (FAVRE) as it is larger and its tubercles are more developed and tangentially elongated. The studied sample shows that the appearing of this tangential elongation of the tubercles, when present, occurs at many varying diameters and it never occurs before D=70 mm. In the Acanthicum Zone of the Mount Crussol, in fact *T. pseudoflexuosum* (FAVRE) represents juvenile or small sized specimens of *T. compsum* (OPPEL) [M].

Moreover, according to HÖLDER (1955) Taramelliceras greenackeri (MOESCH, 1865) is a distinct species whose lectotype is the specimen DE LORIOL figured (1877, pl. V, fig. 2), while the specimen shown in fig. 3 is a clearly inner whorled of T. compsum (OPPEL) [M]. Our own observations have led us to the same statement: if many T. compsum (OPPEL) [M] specimens do show a relatively developed stage that is identical to DE LORIOL's in fig. 3 (1877) in the inner whorls (stage 2 "pichleri"), none of the specimen from Mount Crussol is close enough to the one in fig. 2, that latter having a very peculiar morphology. Similarly, the subspecies T. pseudoflexuosum gracile HÖLDER, 1955 is very different from the morphotype pseudoflexuosum (FAVRE, 1877) of T. compsum (OPPEL) [M]. Once again, no specimen from the No. 193 and 195 bed's sample in Crussol shows such a dense and slender ribbing. However, in present day knowledge, no one can assume whether it is a distinct species or an extremely

uncommon dense-ribbed morphotype.

Moreover, the study of many Glochiceras (Lingulaticeras) crenosum (QUENSTEDT, 1887) specimens (here [m] of T. compsum) shows that this taxon's inner whorls are identical to T. compsum (OPPEL) [M] ones up to D=15-20 mm. Under that diameter, neither form shows any ornamentation and both dimensional parameters are perfectly comparable: W/D between 0.25 and 0.35, H/D between 0.40 and 0.50 and U/D between 0.20 and 0.33. Figures 16, 17 and 18 also show that the parameters U, Wand H, in function of D, get different in microconchs over 20 mm or so. Thus they follow an allometric relationship, while the macroconchs parameters follow an isometric one. Furthermore, from that diameter, the very subtile G. (L.) crenosum (QUENSTEDT) ornamentation sometimes shows thin and falciform striations bearing a bulge in the lower third of the flanks, its shape and its line are strongly reminiscent of the T. compsum (OPPEL) [M] ornamentation. These observations suggest that G. (L.) crenosum (QUENSTEDT) probably represents the microconch equivalent to the many contemporaries T. compsum (OPPEL) [M].

However, OLORIZ (1978) reported G. (L.) crenosum (QUENSTEDT) can be found from the Divisum Zone (Lower Kimmeridgian) and it still can be seen in the Beckeri Zone (Upper Kimmeridgian), which does not correspond to the *T. compsum* (OPPEL) [M] distribution

Fig. 16: Streblites weinlandi (OPPEL, 1863) [M], whorl sections, ×1; a: specimen No. crl126, coll. BAUDOUIN; b: specimen No. crl055, coll. BAUDOUIN; c: specimen No. crl060, coll. BAUDOUIN; d: specimen No. crl072, coll. BAUDOUIN.

(Acanthicum and Pseudomutabilis Zone - Kimmeridgian strictly). But we should note that, in general, the distinction between different "species" might get problematic because of the slightly expressed ornamentation in Oppeliidae microconchs. Thus, the specimens OLORIZ (1978) reported, which have a different stratigraphic position from *T. compsum* (OPPEL), could be the very similar microconch equivalents of closely related species, species such as *Taramelliceras trachinotum* (OPPEL).

1863) in the Divisum Zone or *Taramelliceras intersistens* HÖLDER, 1955 and *Taramelliceras klettgovianum* (WÜRTTEMBERG, 1866) in Pseudomutabilis and Beckeri zones.

Subfamily *Streblitinae* SPATH, 1925 Genus *Streblites* HYATT, 1900

Type-species: Ammonites tenuilobatus OPPEL, 1863

Streblites weinlandi (OPPEL, 1863) Pl. I, fig. 5, 6, 8; Pl. II, fig. 1; Pl. IX, fig. 1-8; Pl. X, fig. 1-14

Synonymy

Morph weinlandi [M] (= macroconch)

- ⁴ 1863. Ammonites weinlandi nov. sp. OPPEL, p. 198, pl. 53, fig. 1.
- 1876. *Ammonites levipictus* nov. sp. DUMORTIER & FONTANNES, p. 55, pl. 7, fig. 3, 5.
- pars 1876. Ammonites tenuilobatus OPPEL, 1863. -DUMORTIER & FONTANNES, p. 52, pl. 7, fig. 1, non pl. 7, fig. 2.
 - 1876. Ammonites weinlandi OPPEL, 1863. DUMORTIER & FONTANNES, p. 57, pl. 7, fig. 4.
 - 1876. *Oppelia weinlandi* (OPPEL, 1863). LORIOL, p. 34, pl. 3, fig. 3, 4.
- ? 1877. *Ammonites weinlandi* OPPEL, 1863. FAVRE, p. 27, pl. 2, fig. 6.
 - 1879. *Oppelia levipicta* (FONTANNES, 1875). -FONTANNES, p. 22, pl. 3, fig. 3, 4.
- ? 1879. *Oppelia tenuilobata* (OPPEL, 1863). FONTANNES, p. 21, pl. 3, fig. 5, *non* fig. 6.
- ? 1879. Oppelia weinlandi (OPPEL, 1863). FONTANNES, p. 21, pl. 3, fig. 2.
 - 1929. Streblites levipictus (FONTANNES, 1875). -WEGELE, p. 13, pl. 25, fig.13.
 - 1929. Streblites weinlandi (OPPEL, 1863). WEGELE, p. 13, pl. 25, fig.12.

Plate I

Fig. 1a, b:	Taramelliceras compsum (OPPEL, 1863) [M]. Reproduction of the original figuration by OPPEL, 1863, pl.
	57, fig. 1. ×0.75.
Fig. 2a, b:	Taramelliceras compsum (OPPEL, 1863) [M]. Cast of the lectotype. x0.75.
Fig. 3:	Taramelliceras compsum (OPPEL, 1863) [M]. Reproduction of the lectotype original figuration of
	Taramelliceras pseudoflexuosum (FAVRE, 1877) [FAVRE, 1877, pl. 3, fig. 1].
Fig. 4a, b:	Taramelliceras compsum (OPPEL, 1863) [M]. Reproduction of the specimen figured by DE LORIOL
	(1877, pl. V, fig. 2) as Taramelliceras greenackeri (MOESCH, 1865), but corresponding to inner whorls of
	T. Compsum, stade 2 "pichleri". ×1.
Fig. 5a-d, 6a, b:	Streblites weinlandi (OPPEL, 1863) [m]. Reproduction of the specimens figured by DE LORIOL (1877)
	(Ammonites dentatus, pl. 5, fig. 4-5). ×1.
Fig. 7a, b:	Taramelliceras compsum (OPPEL, 1863) [m]. Reproduction of the original figuration of the holotype of
	Glochiceras crenosum QUENSTEDT, 1887 (QUENSTEDT, 1887, pl. 92, fig. 32).
Eig Ro h	Strablitan wainlandi (Opper 1862) [M] Paproduction of the original figuration by Opper 1862 pl 52

Fig. 8a, b: Streblites weinlandi (OPPEL, 1863) [M]. Reproduction of the original figuration by OPPEL, 1863, pl. 53, fig. 1. ×1.

Fig. 17: W and H=f(D) for Streblites weinlandi (OPPEL, 1863); macroconchs are in black and microconchs are in grey. The triangle is for the holotype of Streblites weinlandi (OPPEL, 1863) and the square is for the holotype of Streblites levipictus (FONTANNES, 1875).

Plate II

Except Fig. 1 & 2, all the specimens are ×1. Stars points out the beginning of the body-chamber.

- Fig. 1a, b: *Streblites weinlandi* (OPPEL, 1863) [M]. Reproduction of the original figuration of the holotype of *Streblites levipictus* (FONTANNES, 1875) (FONTANNES, 1875, pl. 7, fig. 3, *in* DUMORTIER & FONTANNES). ×0.75.
- Fig. 2a, b: *Ochetoceras canaliferum* (OPPEL, 1863) [M]. Reproduction of the original figuration of the holotype (OPPEL, 1863, pl. 52, fig. 4). ×0.75.
- Fig. 3a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl002, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 4a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl020, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 5a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl017, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 6: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl024, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.

Fig. 7a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl007, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.

- Fig. 8a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl041, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 9a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl014, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 10a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl018, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.

1964. *Streblites levipictus* (FONTANNES, 1875). -HÖROLDT, p. 27, pl. 2, fig. 2-4.

- ? 1964. Streblites tenuilobatus weinlandi (OPPEL, 1863). -HÖROLDT, p. 27, pl. 1, fig. 7, pl. 2, fig. 1.
- ? 1978. Streblites weinlandi (OPPEL, 1863). OLORIZ, p. 47, pl. 4, fig. 1.
 - 1994. Streblites levipictus (FONTANNES, 1875). SCHLE-GELMILCH, p. 43, pl. 13, fig. 2.
 - 1994. Streblites weinlandi (OPPEL, 1863). SCHLEGEL-MILCH, p. 43, pl. 13, fig. 1.

Morph dentatum [m] (= microconch)

- ^k 1818. *Nautilus dentatus* nov. sp. REINECKE, p. 73, pl. 4, fig. 43, 44.
- pars 1849. Ammonites dentatus (REINECKE, 1818). QUENSTEDT, p. 131, pl. 9, fig. 14, non fig. 15.
- *pars* 1858. *Ammonites dentatus* (REINECKE, 1818). QUENSTEDT, p. 615, pl. 76, fig. 7, *non* fig. 6, 8.
- ? 1877. Ammonites (Oppelia) dentatus (REINECKE, 1818).
 FAVRE, p. 37, pl. 2, fig. 4.
 - 1877. *Ammonites (Oppelia) dentatus* (REINECKE, 1818). - LORIOL, p. 46, pl. 5, fig. 4, 5.
 - 1879. *Oppelia dentata* (REINECKE, 1818). FONTANNES, p. 52, pl. 7, fig. 10.
- pars 1888. Ammonites dentatus (REINECKE, 1818). -QUENSTEDT, p. 845, pl. 92, fig. 19?, 20?, 22-24, 26, 27, non fig. 21, 25.
- pars 1956. Creniceras dentatus (REINECKE, 1818). ZIEGLER, p. 555, fig.1 a-d, non fig. 1 e, f, nec fig. 13 a-b.
 - 1994. Creniceras dentatum (REINECKE, 1818). SCHLEGELMILCH, p. 42, pl. 12, fig. 10.

Holotype: original figuration in OPPEL, 1863, pl. 53, fig. 1a, b, WAAGEN collection. The holotype is considered lost (HÖROLDT, 1964).

Type locality: Bad Boll area (Württemberg), Germany. **Type stratum:** *«Ammonites tenuilobatus* Zone».

Stratigraphic distribution: in the Mount Crussol outcrops, the oldest specimens were collected from bed No. 171 (Divisum Zone, Lower Kimmeridgian),

where they coexist with *S. tenuilobatus* (OPPEL, 1863). *S. weinlandi* (OPPEL) is particularly abundant in the Acanthicum Zone (Upper Kimmeridgian), particularly in beds No. 193 and 195. It could however be found from the Hypselocylum Zone to the Acanthicum Zone according to OLORIZ (1978) and in the Pseudomutabilis Zone lower part as well according to HANTZPERGUES *et al.* (1997).

Geographic distribution: *Streblites weinlandi* (OPPEL, 1863) can be found in Germany (OPPEL, 1863), in Switzerland (DE LORIOL, 1877), in Southeastern France (DUMORTIER & FONTANNES, 1876; FAVRE, 1877; FONTANNES, 1879; this work) and perhaps in Spain (OLORIZ, 1978).

Material and dimensions (macroconchs [M], N=45; microconchs [m], N=14): see Tables 3 and 4 for macroconchs and microconchs respectively.

Ontogenesis

The macroconchs [M]

Macroconchs specimens have a very involute discoid shell (Fig. 16) (U/D generally between 0.05 and 0.10 for an average of 0.07) which is fairly thin (W/D between 0.13 and 0.28 for an average of 0.21) and with high whorls (H/D between 0.55 and 0.60, for an average of 0.59, W/H generally between 0.25 and 0.46, for an average of 0.36). The shell growth is isometric (relationship of Y=bD type - Fig. 17) but a discrete break in its growth happens at the adult stage. The adult size varies between 70 and 114 mm (maximum observed in the specimen No. crl126, Pl. IX, fig. 8), and an appearing tabular ventral area and a slight widening umbilicus characterize mature specimens. The adult body chamber is slightly over half a whorl large. We can recognize three successive stages during ontogenesis:

Plate III

- Fig. 1a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl026, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 2: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl114, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 3: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl117a, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 4a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl028, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 5a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl037, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 6: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl038, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 7a, b: *Taramelliceras compsum* (OPPEL, 1863) [M], with *Nebrodites* sp. Specimen No. crl111, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.

Plate III

- Stage 1: up to D=15-20 mm the microconchs and macroconchs are identical. The whorl section is compressed, oxycon, with a narrow and rounded venter that bears a conspicuous and finely indented keel on the best-preserved specimens. The flanks are slightly rounded; the narrow umbilicus is almost punctiform. The umbilical wall is vertical, low, with a sharp and slightly rounded edge. There is no visible ornamentation.

- Stage 2 "levipictus": from D=20 mm the ornamentation is becoming visible but it still remains very discreet or absent in some specimens (No. crl062, Pl. IX, fig 5): first numerous secondary ribs are appearing. They are poorly expressed in the upper third of the flanks and they become concave and forwardly inclined near the venter. At about D=40 mm, a highly variable number of flexuous primary ribs appear, but they are often much attenuated and slightly discernible, or they are even absent. Those ribs are inclined forward in the lower half of the flanks and they show a sudden backward inflexion to the midflank, and then again the ribs became concave and forwardly inclined near the ventral edge. In many cases, the main ribs are only visible as slight bulges on the outside umbilical boundary and near the ventral edge. On some specimens (No. crl055, Pl. IX, fig. 1; No.crl065, Pl. 10, fig. 3), we can observe a very slight bulge or flattened area in the coiling direction, that forms a longitudinal line at mid-flanks at the ribs' inflection point. The shell's proportions and morphology are quite similar to the ones observed in the previous stage: a compressed whorl section, slightly rounded flanks, and a narrow rounded venter with a keel. However, the coil becomes more evolute and the whorl section a bit more compressed.

- Stage 3 "weinlandi": this stage can only seen in adults from 60 mm in diameter where the ventral aspect of the body chamber changes. It widens and becomes subtabulate flattened or slightly rounded with a progressive latero-ventral shoulder. The keel can still be seen with a sharper denticulation than in both previous stages. At this stage, a discrete break in its growth happens and as a consequence, the whorls' height growth decreases slightly (Fig. 17). We also notice changes in the ornamentation: the secondary ribs have disappeared and only the main ribs persist as large bulges in the upper half of the flanks. The section is still more compressed than the one in the previous stage.

The peristome, that is rarely preserved in macroconchs, is slightly sinuous with a small ventral protrusion (specimen No. cru062, Pl. X, fig. 1).

The microconchs [m]

The microconch specimens are small and discoid. Adults (between 22 mm and 29 mm in diameter - maximum observed in the specimen No. crl099, Pl. X, fig. 11) are characterized by a distinctly different body chamber with a tabular venter appearing, a significant reduction in the whorl's height, and the presence of lateral apophysis. The living body chamber is about half a turn long. Only two expressed ontogenetic growing stages are expressed:

- Stage 1: up to D=15-20 mm, the shell's characteristics are identical to the macroconchs' (see above), and in ventral region sight is precisely as acute and keeled.

- Stage 2 "dentatum": the height growth of the adult body chamber reduces greatly while the coiling becomes much more evolute, thus determining a scaphitoïde type

Plate IV

- Fig. 1a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl136, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 2 a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl043, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 3 a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl116, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 4: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru003, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 195. P. BOSELLI's collection.
- Fig. 5: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl140a, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 6: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl135, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 7a, b: Taramelliceras compsum (OPPEL, 1863) [M]. The Aptychus near the peristome may belong to the same specimen. Specimen No. cru014, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. P. BOSELLI's collection.
- Fig. 8a, b: *Taramelliceras compsum* (OPPEL, 1863) [M], pathologic specimen with a very evolute and unssymmetrical coil. Specimen No. crl044, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.

Plate IV

shell. The ventral area aspect changes abruptly from the previous stage: the so far unbroken keel is replaced by fine denticulations in the first part of the adult body chamber. Those denticulations then disappear when the venter stretches and becomes subtabulate or slightly concave with a more or less rounded latero-ventral edge. Except for the keel, the shell is completely smooth.

When visible (specimens No. crl099, Pl. X, fig. 11, No. crl133, Pl. X, fig. 10, No. cru068, Pl. X, fig. 9), the peristome shows large spatulate lateral apophysis with a narrow base, and a rostrum, in front of which a deep and narrow ventral furrow can be seen. It is completed by a slight bulge shaped as a chevron (specimen No. crl090a, Pl. X, fig. 13). DE LORIOL's figuration (1877, pl. V, fig. 4, reproduced here Pl. I, fig. 6) shows the peristome's characteristic shape.

Variability

The variability in Mount Crussol's Streblites sample focuses on the appearing stages' diameter, on the ornamentation's strength and on the section's thickness. These features seem to be correlated. As in Taramelliceras that variability is more pronounced in dimorphic macroconchs than in microconchs. In macroconchs, stage 2 "levipictus" usually appears at D=20 mm, but it may also appear later on some slender specimens (about D=35 mm in the No. crl091, Pl. IX, fig. 7) which have a weaker ornamentation and a narrower section. The variability relates to the ornamentation's aspect: in some slender specimens, secondary ribs are very tenuous whereas primary ribs usually absent (features usually associated with a compressed whorl section, and a late appearing ornamentation). In the most robust specimens, secondary ribs are strongly marked in the upper third of flanks and they are often associated with very distinct primary ribs (which can sometimes be more dense) in the upper flanks and near the umbilicus. Streblites weinlandi (OPPEL, 1863) robust individuals can sometimes have

slight bulges at mid-flank evoking some lateral tubercles' traces (specimen No. crl065, Pl. X, fig. 3). This feature can be found in the older *Streblites tenuilobatus* (OPPEL, 1863) species presuming to be the *S. weinlandi* (OPPEL) ancestor (see HÖROLDT, 1964). The *S. weinlandi* (OPPEL) robust morphology has also a larger section of the whorls, a larger ventral area and the umbilicus is slightly more widened (specimen No. crl055, Pl. IX, fig. 1). That observation sustains the classical "laws" of characters' covariation (WESTERMANN, 1966) that demonstrate a link between the section's shape, the ornamentation's robustness and then the umbilicus's widening.

Stage 3 "weinlandi" is also variable in its appearing diameter: from D=60 mm with the most robust specimens (No. crl055, Pl. IX, fig. 1; No. cru066, Pl. X, fig. 2) while it may appear after D=100 mm in the most slender specimens (specimen No. crl126, Pl. IX, fig. 8). Those specimens often reach a more important diameter than robust adults (eg D=114 mm for the slender specimen No. crl126, Pl. IX, fig. 1, As might be expected, every intermediaries abundantly interconnect the extreme morphologies.

In microconchs, variability mainly focuses on relative marked crenulations which are visible on the early adult body chamber, but it also focuses on the relative contraction's strength of the body chamber and on the maximum adult size (from 22 to 29 mm). In addition, some specimens show a slightly thicker whorls' section on the body chamber, a phenomenon that seems to be related to a strongly pronounced concavity of the ventral area (specimen No. crl090b, Pl. X, fig. 13).

Differential diagnosis

Streblites tenuilobatus (OPPEL, 1863) [M] is only known in the Lower Kimmeridgian (upper part of the Hypselocyclum Zone and Divisum Zone) and it differs from *Streblites weinlandi* (OPPEL, 1863) [M] as

Plate V

- All the specimens are ×1. Stars points out the beginning of the body-chamber.
- Fig. 1: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru024, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. P. BOSELLI's collection.
- Fig. 2: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru038, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 3: Taramelliceras compsum (OPPEL, 1863) [M]. Specimen No. cru015, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. P. BOSELLI's collection.
- Fig. 4: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru023, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. P. BOSELLI's collection.
- Fig. 5: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru030, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 6: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru039, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.

its ornamentation is more strongly marked. The main ribs of *S. tenuilobatus* (OPPEL) [M] are stronger on the umbilical edge, whereas they are only a few remaining traces or they can even be absent in *S. weinlandi* (OPPEL) [M]. Moreover, *S. tenuilobatus* (OPPEL) [M] shows clear lateral and latero-ventral tubercles which can't be found in *S. weinlandi* (OPPEL) [M].

Streblites frotho (OPPEL, 1863) [M] is so close to *S. tenuilobatus* (OPPEL) that it is sometimes considered as a subspecies (HÖROLDT, 1964). It can be seen in the Lower Kimmeridgian [Platynota Zone and base of the Hypselocyclum Zone; and from the Upper Oxfordian Bimmamatum Zone according to OLORIZ (1978)]. Like *S. tenuilobatus* (OPPEL), *S. frotho* (OPPEL) similarly differs from *S. weinlandi* (OPPEL) as lateral and lateroventral tubercles can be found and its main ribs are strongly marked on the umbilical edge.

Streblites folgariacus (OPPEL, 1863) [M] (Beckeri Zone of Uppermost Kimmeridgian and Hybonotum Zone of Lower Tithonian) differs from *S. weinlandi* (OPPEL) [M] with its wider whorls' section, its wider and tabular ventral area, and its spaced tubercles along the phragmocone's ventral edge.

Discussion

Streblites weinlandi (OPPEL, 1863) is mainly different from the Streblites levipictus (FONTANNES, 1875) taxon with an early wider and subtabulate ventral area. However, studying both Mount Crussol's sample and its variability shows that these two morphologies are perfectly getting into the intraspecific variability of one single palaeospecies. Indeed, as in *S. weinlandi* (OPPEL), specimens whose morphology is strictly identical to the *S. levipictus* (FONTANNES) type (which are much more numerous quantitatively), always show a modified venter at large diameters (stage 3 "weinlandi" at D>100 mm). In fact, *S. levipictus* (FONTANNES) may be considered as the slender morphology of *S. weinlandi* (OPPEL), in which the tabular venter stage appears later in ontogeny. Consequently, *S. levipictus* (FONTANNES) is considered here as a junior synonym of *S. weinlandi* (OPPEL).

In literature, much confusion seems to exist between the different taxa of the genus Streblites HYATT, 1900. That can be explained as some authors (eg DUMORTIER & FONTANNES, 1876) have interpreted, in a very broad sense, the only Kimmeridgian S. tenuilobatus species (OPPEL, 1863) (upper part of the Hypselocyclum Zone and Divisum Zone - HÖROLDT, 1964; HANTZPERGUE et al., 1997). Finally, that species has often been confused with S. frotho (OPPEL, 1863) (present only at the Kimmeridgian base) and S. weinlandi (OPPEL, 1863). For example, the specimen DUMORTIER & FONTANNES figured (1876, pl. VII, fig. 1) as S. tenuilobatus (OPPEL) is actually a robust *S. weinlandi* (OPPEL) variant [this work] with a very dense costulation. It also should be noted that originally the Tenuilobatus Zone of OPPEL, used in many 19th century works (DE LORIOL, 1876, 1877; DUMORTIER & FONTANNES, 1876; FONTANNES, 1879), included the whole Kimmeridgian part where other Streblites HYATT, 1900 species can be found. Those species are morphologically close to S. tenuilobatus (OPPEL), as are S. frotho (OPPEL) and S. weinlandi (OPPEL).

More recently, HÖROLDT (1964) and, later on, ENAY (2009) consider that *Streblites weinlandi* (OPPEL) is a *S. tenuilobatus* (OPPEL) subspecies. The *S. weinlandi* (OPPEL) type specimen's age is too vague to allow any accurate identifications of its original stratigraphic position ("Tenuilobatus Zone" of OPPEL). However, its indisputable presence in the Acanthicum levels in Mount Crussol, where *S. tenuilobatus* (OPPEL) disappeared, can provide some precisions. *Streblites weinlandi* (OPPEL), whose ornamentation is very different, and it does not belong to the same taxon of "species-group" though both forms probably have close phylogenic relationships.

On the other hand, studing numerous "Creniceras dentatum" (REINECKE, 1818) specimens (here [m]) in the

Plate VI

- Fig. 2: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru055, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 3: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru076, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. P. BOSELLI's collection.
- Fig. 4a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru085, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. P. BOSELLI's collection.
- Fig. 5a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru084, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 195. P. BOSELLI's collection.
- Fig. 6: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru045, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.

Fig. 1: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru082, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 195. P. BOSELLI's collection.

same levels as Streblites weinlandi (OPPEL, 1863) [M] shows that the two "species" are identical until D=20mm (stage 1 smooth). As in the Taramelliceras compsum (OPPEL, 1863) microconchs case (see above), we observe that the values of U, W and H in function of D only become different over about 20 mm in diameter (Fig. 17) and they become allometric in "Creniceras dentatum" (REINECKE), while the parameters' growth is still isometric (but with a small break in slope) in Streblites [M]. In addition, the ventral area shape is very convergent between both forms on the adult body chamber. From those facts usual in the ammonites' dimorphism frame (MAKOWSKI, 1962; CALLOMON, 1963) "Creniceras dentatum" (REINECKE, 1818) and Streblites weinlandi (OPPEL, 1863) are both regarded here as two dimorphs of a single paleobiological species.

Following ZIEGLER (1974), who noticed the same stratigraphic range between the whole genus *Streblites* HYATT, 1900 and "*Creniceras dentatum*" (REINECKE, 1818), the latter taxon's representatives are most probably the dimorphic microconchs of several *Streblites* successive species. Indeed, Oppeliidae's microconchs offer fewer morphological possibilities (and as a consequence evolutionary ones) than their macroconch correspondents, mainly because of their nearly-absent ornamentation and their very stable morphology. Apart from a precise stratigraphic context, it may therefore

be very difficult, even impossible, to differentiate them. A similar phenomenon occurs for the Callovian Strigoceratidae where the taxon *Oecoptychius refractus* (REINECKE, 1818) could correspond to the microconchs of several *Phlycticeras* HYATT, 1893 successive species (SCHWEIGERT & DIETZE, 1998). So even though "*Creniceras dentatum*" (REINECKE, 1818) should have a taxonomical seniority over *Streblites weinlandi* (OPPEL, 1863) (by the principle of priority), that option is not suitable because it may lead to confusion. The use of *Streblites weinlandi* (OPPEL), which is based on a macroconch specimen with easily recognizable specific features, is much more suitable to maintain a good definition of that species.

Subfamily Ochetoceratinae SPATH 1928 Genus Ochetoceras HAUG, 1855

Type-species: *Ammonites canaliculatus* VON BUCH, 1831

Ochetoceras canaliferum (OPPEL, 1863) Pl. II, fig. 2; Pl. XI, fig. 1-3

Synonymy

Plate VII

- Fig. 1: *Taramelliceras compsum* (OPPEL, 1863) [M], with *Streblites weinlandi* (OPPEL, 1863) [m] and *Sutneria cyclodorsata* (Moesch, 1867). Specimen No. cru088, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 195. P. BOSELLI's collection.
- Fig. 2: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl054, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 3a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru086, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. P. BOSELLI's collection.
- Fig. 4: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru002a, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 195. P. BOSELLI's collection.
- Fig. 5: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl117c, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 6: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl082b, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 7a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl097, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 8a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl096, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 9a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl120, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 10a, b:*Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl122, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 11: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. crl080, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.

^{1863.} Ammonites canaliferum nov. sp. - OPPEL, p. 195, pl. 52, fig. 4.

- ? 1876. Ammonites canaliferus OPPEL, 1863. LORIOL, p. 48, pl. 3, fig. 5.
 - 1959. Ochetoceras canaliferum (ОРРЕL, 1863). -ВЕRСКНЕМЕR & HÖLDER, р. 102, pl. 25, fig. 129, 133.
 - 1964. Ochetoceras (Ochetoceras) canaliferum (OPPEL, 1863). HÖROLDT, p. 68, pl. 4, fig. 4-6.
 - 1972. Ochetoceras (Ochetoceras) canaliferum (OPPEL, 1863). SCHAIRER, p.53, pl. 2, fig. 3.
 - 1984. Ochetoceras (Ochetoceras) canaliferum (OPPEL, 1863). SCHAIRER, p. 34, pl. 2, fig. 1-3.
 - 1992. Ochetoceras (Ochetoceras) canaliferum (OPPEL, 1863). FINKEL, p. 231, fig. 71.
 - 1994. Ochetoceras (Ochetoceras) canaliferum (OPPEL, 1863). SCHLEGELMILCH, p. 48, pl. 15, fig. 1.
 - 2009. *Ochetoceras canaliferum* (OPPEL, 1863). MOOR, pl. 8, fig. 3, pl. 9, fig. 4.

Holotype: original figuration by OPPEL (1863, pl. 52, fig. 4a, b); holotype preserved at Munich under the No. As VIII 87. We must note that the description given by OPPEL (1863, p. 195) is partially based on other specimens than the type (HÖROLDT, 1964).

Type locality: probably the Bad Boll area (Württemberg) in Germany.

Type stratum: "Ammonites tenuilobatus Zone".

Stratigraphic distribution: Ochetoceras canaliferum (OPPEL, 1863) seems very uncommon. The three specimens studied in this work come from the bed No. 193 in Mount Crussol and are dated from the Acanthicum Zone. However, according to BERCKHEMER & HÖLDER (1959) the species can be found throughout the Lower Kimmeridgian.

Geographic distribution: Ochetoceras canaliferum (OPPEL, 1863) is mainly known in Germany (OPPEL, 1863; BERCKHEMER & HÖLDER, 1955; SCHAIRER, 1972; MOOR, 2009), but also in Spain (FINKEL, 1992) and in Southeastern France (this work).

Material and dimensions (N=3): see Table 5.

Description

Among the three studied specimens, a single one has its living body chamber (specimen No. cru089, Pl. XI, fig. 3). They show a narrow lanceolate whorls' section (Fig. 18), with rounded flanks that converge toward the ventral area. The latter is first slightly rounded first, then it gradually becomes sharper as it grows. The venter has a continuous keel, which is high and acute. The umbilical wall is relatively high, slightly inclined and rounded, and its edge is sharp. The coiling of the shell is very involute with an average ratio U/D=0.13.

From about *D*=40 mm (specimen No. cru089, Pl. XI, fig. 3) the ornamentation consists in falcate main ribs which are weak and broad. They appear near the umbilical edge and they are inclined forward in the flanks' first half and then they bend sharply backwards at mid-flank. The main ribs are then concave in the upper flanks before fading near the ventral area. In the flanks's upper third, there are numerous secondary ribs which are strongly inclined forward and slightly concave. They are variable in shape: almost imperceptible on the specimen No. crl001 (Pl. XI, fig. 1), they are more strongly marked on the specimens

Plate VIII

- Fig. 1: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru078, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 195. P. BOSELLI's collection.
- Fig. 2a, b: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru083, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. P. BOSELLI's collection.
- Fig. 3: *Taramelliceras compsum* (OPPEL, 1863) [M]. Specimen No. cru056, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 4: *Taramelliceras compsum* (OPPEL, 1863) [m]. Specimen No. crl123, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 5: *Taramelliceras compsum* (OPPEL, 1863) [m]. Specimen No. crl119, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 6: *Taramelliceras compsum* (OPPEL, 1863) [m]. Specimen No. cru058, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 7: *Taramelliceras compsum* (OPPEL, 1863) [m]. Specimen No. cru059, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 8: *Taramelliceras compsum* (OPPEL, 1863) [m]. Specimen No. cru007, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 195. P. BOSELLI's collection.
- Fig. 9: *Taramelliceras compsum* (OPPEL, 1863) [m]. Specimen No. cru060, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 10: *Taramelliceras compsum* (OPPEL, 1863) [m]. Specimen No. cru037b, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.

Fig. 18: Ochetoceras canaliferum (OPPEL, 1863), whorl sections, ×1. Specimen No. crl001, coll. BAUDOUIN.

No. cru033 (Pl. XI, fig. 2) and cru089 (Pl. XI, fig. 3). No significant change seems to appear in the ornamentation on the living body chamber. No peristome can be found on all the studied specimens.

Differential diagnosis

Ochetoceras canaliferum (OPPEL, 1863) is a fairly easilyrecognizable species with its ornamentation that is very weak, maily in the flanks' lower half. O. hispidiforme (FONTANNES, 1879), is from the Upper Oxfordian and it can still be seen at the Kimmeridgian base; it differs from O. canaliferum (OPPEL) since it has many well marked ribs, especially in the flanks' lower part, and its spiral furrow is more strongly marked.

Ochetoceras irregulare BERCKHEMER & HÖLDER, 1959

is very close to *O. canaliferum* (OPPEL), but it is different with its ornamentation that is more pronounced with a distinct spiral furrow at mid-flank and a less developed keel. *O. irregulare* BERCKHEMER & HÖLDER can be found in the Upper Kimmeridgian (Beckeri Zone, Setatum and Ulmense Subzones), but OLORIZ (1978) puts it in the *O. canaliferum* (OPPEL) group as there are intermediate specimens (considering ornamentation and stratigraphic position). We should note that BERCKHEMER & HÖLDER (1959) consider the Kimmeridgian ("Tenuilobatus Zone") species *O. palissyanum* (FONTANNES, 1879) as a possible *O. irregulare* BERCKHEMER & HÖLDER synonym.

Ochetoceras zio (OPPEL, 1863) is different from O. canaliferum (OPPEL) as its primary ribs are very strong, especially in the flanks' lower half. O. zio (OPPEL) is reported from the Acanthicum Zone (Upper Kimmeridgian) to the Beckeri Zone, Ulmense Subzone. It should also still be seen into the early Tithonian (BERCKHEMER & HÖLDER, 1959; HÖROLDT, 1964).

Species linked to the subgenus *Granulochetoceras* GEYER, 1960 [*Ochetoceras* (*G.*) *ornatum* BERCKHEMER & HÖLDER, 1959, *O*. (*G.*) *cristatum* DIETERICH, 1940, *O*. (*G.*) *argonautoides* (MAYER, 1871), *O*. (*G.*) *undulatum* HÖROLDT, 1964] can be found from the top of the Oxfordian up to the Beckeri Zone (Upper Kimmeridgian), and can be easily distinguished from *O*. *canaliferum* (OPPEL) by a spiral furrow at mid-flank bearing a wellmarqued denticulation.

Remarks

The three specimens studied in this work show similar dimensional parameters (Fig. 19) and very close ornamental traits that only differ from another by the variable strength of the secondary ribs. While expecting

Plate IX

- Fig. 1a, b: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. crl055, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 2a, b: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. crl056, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 3a, b: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. crl060, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 4a, b: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. crl061, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 5: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. crl062, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 6: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. crl067, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 7a, b: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. crl091, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 8a, b: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. crl126, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.

Plate IX

future new data about the variability of this group, they are regarded here as the possible expression of different morphological poles of one single species. No microconchs were found, probably due to their scarcity in the beds studied.

V. CONCLUSIONS

Fossiliferous levels of the Kimmeridgian Acanthicum Zone in Mount Crussol highly contribute to the understanding of the Oppeliidae faunas dating back to that period, and to the understanding of their variability in light of the species' modern conceptions in paleontology. The ontogenetic studies often show a strong relationship between morphological variation and variability in the appearance and the duration of the different stages recognized during growth (alteration of the ontogeny of heterochronic type), particularly in the case of *Taramelliceras compsum* (OPPEL, 1863). Thus, in this species the most slender specimens are also the most peramorphic (accelerated development of stage 4). The report is reversed in Streblites weinlandi (HÖROLDT, 1964) as the most slender specimens are the most paedomorphic (retarded appearance of stage 2). Another factor significantly determines the morphological variability, too: the coil's widening and/or the section's thickness versus the more or less robust ornamentation. In Streblites weinlandi (OPPEL), this phenomenon occurs with the strengthening of the ornamentation for wider section specimens. This observation is consistent with the covariation laws of the characters (WESTERMANN, 1966) mainly based on the relationship between the section shape and the ornamentation strength. In Taramelliceras compsum (OPPEL) the phenomenon also exists, but it seems more influenced by the umbilicus's widening: a wider umbilicus corresponds to forms with stronger ornamentation.

On the other hand, the hypothesis of an existing sexual dimorphism in Ammonoidea has long been known and was mentioned on numerous occasions (eg BRINKMANN, 1929; MAKOWSKI, 1962; CALLOMON, 1963; KENNEDY

Plate X

- Fig. 1: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. cru062, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 2: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. cru066, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 3a, b: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. crl065, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 4: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. crl068, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 5: *Streblites weinlandi* (OPPEL, 1863) [M]. Specimen No. cru065, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 6a, b: *Streblites weinlandi* (OPPEL, 1863) [m]. Specimen No. crl100, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 7: *Streblites weinlandi* (OPPEL, 1863) [m]. Specimen No. cru004, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 195. P. BOSELLI's collection.
- Fig. 8: *Streblites weinlandi* (OPPEL, 1863) [m]. Specimen No. crl132, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 9: *Streblites weinlandi* (OPPEL, 1863) [m]. Specimen No. cru068, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 10: *Streblites weinlandi* (OPPEL, 1863) [m]. Specimen No. crl133, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 11a, b: *Streblites weinlandi* (OPPEL, 1863) [m]. Specimen No. crl099, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 12: *Streblites weinlandi* (OPPEL, 1863) [m]. Specimen No. cru069, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 13a, b: *Streblites weinlandi* (OPPEL, 1863) [m]. Specimen No. crl090b, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 14a, b: *Streblites weinlandi* (OPPEL, 1863) [m]. Specimen No. crl134, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.

Plate X

Fig. 19: U and H=f(D) for Ochetoceras canaliferum (OPPEL, 1863). The triangle is for the holotype.

Plate XI

- Fig. 1: Ochetoceras canaliferum (OPPEL, 1863). Specimen No. cr1001, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 2: Ochetoceras canaliferum (OPPEL, 1863). Specimen No. cru033, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 ?. P. BOSELLI's collection.
- Fig. 3: Ochetoceras canaliferum (OPPEL, 1863). Specimen n° cru089, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. P. BOSELLI's collection.
- Fig. 4: *Discosphinctoides* sp. Specimen No. crl084, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 5: *Discosphinctoides praenuntians* (FONTANNES, 1879). Specimen No. crl083, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 6: Aspidoceras acanthicum (OPPEL, 1863). Specimen No. crl088, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 7: *Phylloceras praeposterium* (FONTANNES, 1875). Specimen No. crl086, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 8: *Nebrodites hospes* (NEUMAYR, 1873). Specimen No. crl143, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 9: *Phylloceras* aff. *saxonicum* NEUMAYR, 1871. Specimen No. crl146, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.
- Fig. 10: *Pseudaganides* cf. *pseudaganiticus* (SCHLOTHEIM, 1820). Specimen No. cru095, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. P. BOSELLI's collection.
- Fig. 11: *Ptychophylloceras ptychoicum* (QUENSTEDT, 1845). Specimen No. cru092, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.

& COBBAN, 1976; DAVIS *et al.*, 1996), and the study of the Oppeliidae of the Mount Crussol thus reinforces the observations made by ZIEGLER (1974). The author recognized the taxon "*Creniceras dentatum*" (REINECKE, 1818) as microconch of the different successive species of the genus *Streblites* HYATT, 1900, and he proposed to consider some species of the genus *Glochiceras* HYATT, 1900 as *Taramelliceras*'s microconchs. Thus, it appears that the subfamily Glochiceratinae HYATT, 1900 has not any real biological values, since it is currently only used to indiscriminately aggregate microconchs of various Oppeliidae mainly belonging to Ochetoceratinae SPATH, 1928 and to Taramelliceratinae SPATH, 1928.

Further research is now required to identify or confirm the existence of a dimorphism and a similar intraspecific morphological variability in other Oppeliidae, especially in the Kimmeridgian species *Taramelliceras trachinotum* (OPPEL, 1863) and *Streblites tenuilobatus* (OPPEL, 1863). Studying the ontogeny and variability in older and more recent Oppeliidae's species (of *Taramelliceras* and *Streblites*) may also allow the distinction between factors that are within the intraspecific variability and those that evolve as time goes by. It will thus enable a better understanding of the evolution of that group.

ACKNOWLEDGEMENTS

We would especially like to thank Philippe QUEREILHAC for his help and his constructive comments in preparing this work, as well as for the extensive bibliography he has kindly forwarded. We also thank Stéphane BERSAC for his judicious remarks in completing this work, Günter SCHWEIGERT and the team of the G.P.A.'s forum (http:// gpammonites.forum-actif.net/) for providing us with some works hard to find, Valérie PIEGAY for her help in the final English version of this work, and Marc BOSELLI for his assistance on the field. We warmly thanks too our reviewer Armin SCHERZINGER for his constructive remarks and certain points of view he shared with us.

REFERENCES

- ANDELKOVIC, M. Z. (1966) Amoniti iz Slojeva sa Aspidoceras acanthicum Stare Planine (Istocna Srbija). Palaeontologia jugoslavica, Zagreb, Sv. 6: 5-135, 107 fig., 5 tab., 31 pl.
- ATROPS, F. (1982) La sous-famille des Ataxioceratinae dans le Kimméridgien inférieur du sud-est de la France; systématique, évolution, chronostratigraphie des genres Orthosphinctes et Ataxioceras. Documents des Laboratoires de géologie de Lyon, 83: 463 p., 64 fig., 54 tabl., 45 pl.
- BAIER, J. & V. G. SCHWEIGERT (2001) Zum Vorkommen von Aulacostephanus yo (D'ORBIGNY) im Schwäbischen Jura (Ober-Kimmeridgium, SW-Deutschland). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Stuttgart, 3: 184-192, 3 fig.
- BANTZ, H. U. (1970) Der Fossilinhalt des Treuchtlinger Marmors (Mittleres Unter-Kimmeridge) der südlichen Frankenalb. *Erlanger Geologische Abhandlungen*, Erlangen, 82: 86 p.
- BERCKEMER, F. & H. HÖLDER (1959) Ammoniten aus dem Oberen Weissen Jura Suddeutschland. *Beihefte zum Geolo*gischen Jahrbuch, Hannover, 35: 135 p., 89 fig., 27 pl.
- BERT, D. (2004) Révision, étude systématique et évolution du genre Gregoryceras SPATH, 1924 (Ammonoidea, Oxfordien). Annales du Muséum d'Histoire Naturelle de Nice, 19: 183 p., 24 fig., 22 pl.
- BERT, D. (2009) Discussion, evolution and new interpretation of the *Tornquistes* LEMOINE, 1910 (Pachyceratidae, Ammonitina) with the exemple of the Vertebrale Subzone

Plate XII

- Fig. 1: *Nebrodites* gr. *agrigentinus* (GEMMELLARO, 1872). Specimen No. cru096, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 2: *Sutneria cyclodorsata* (MOESCH, 1867). Specimen No. cru091, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 3: *Aulacostephanus phorcus* (FONTANNES, 1876). Specimen No. cru090, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 4: Aspidoceras gr. acanthicum (OPPEL, 1863). Specimen No. cru098, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 5: *Discosphinctoides praenuntians* (FONTANNES, 1879). Specimen No. cru100, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 6: *Lytoceras polycyclum* NEUMAYR, 1873. Specimen No. cru104, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 7: *Holcophylloceras polyolcum* (BENECKE, 1866). Specimen No. cru094, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 8: Orthaspidoceras lallierianum (D'ORBIGNY, 1849). Specimen No. cru080b, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 195. P. BOSELLI's collection.

sample (Middle Oxfordian) of southeastern France. *Revue de Paléobiologie*, Genève, 28 (2): 471-489, 7 fig., 2 pl.

- BERT, D. & G. DELANOY (2009) Pseudoshasticrioceras bersaci nov. sp. (Ammonoidea, Gassendiceratinae), and new ammonite biohorizon for the Upper Barremian of southeastern France. Carnets de Géologie / Notebooks on Geology, Brest, Article 2009/02 (CG2009_A02): 10 p., 6 fig., 6 pl.
- BERT, D., G. DELANOY & L. CANUT (2009) L'origine des Imerites ROUCHADZE, 1933 : résultat d'une innovation chez les Gassendiceratinae BERT, DELANOY et BERSAC, 2006 (Ammonoidea, Ancyloceratina). Annales de Paléontologie, Paris, 95: 21-35, 3 fig., 2 pl.
- BONNOT, A. (1995) Les Aspidoceratidae d'Europe occidentale au Callovien supérieur et à l'Oxfordien inférieur. Thèse 3° cycle, Dijon (unpublished): 537 p., 15 pl.
- BRINKMANN, R. (1929) Statistisch-Biostratigraphische Untersuchungen an Mitteljurassischen Ammoniten Über Artbegriff und Stammesentwickung. Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klass, Neue folge, 13 (3): 275 p.
- CALLOMON, J. H. (1963) Sexual dimorphism in Jurassic ammonites. *Transaction Leicester Literature Philosophi*cal Society, 57: 21-56, 1 pl.
- CAMPANA, A. DEL (1905) Fossili del Giura superiore di Sette Communi in Provincia di Vicenza. *Instituto di studi superiori, sezione: scienze fisiche e naturali*, Firenze, 23: 137 p., 19 fig., 7 pl.
- CANAVARI, M. (1896) La fauna degli strati con Aspidoceras acanthicum di M. Serra presso Camerino. Palaeontographia Italica, Pisa, 2: 28 p., 14 fig., 6 pl.
- CHALINE, J. & D. MARCHAND (2002) Les merveilles de l'évolution. Editions Universitaires de Dijon, collection Sciences: 268 p.
- CHANDLER, R. & J. CALLOMON (2009) The Inferior Oolite at Coombe Quarry, near Mapperton, Dorset, and a new Middle Jurassic ammonite faunal horizon, Aa-3b, *Leioceras comptocostosum* n.biosp. in the Scissum Zone of the Lower Aalenian. *Proceedings of the Dorset Natural History and Archaeological Society*, 130: 99-132.
- CHOFFAT, P. (1893) Description de la faune jurassique du Portugal - classe des céphalopodes. Première série - ammonites du Lusitanien de la contrée de Torres-Vedras. Direction des Travaux Géologiques du Portugal, Lisbonne : 82 p., 19 pl.
- COURVILLE, P. & C. CRONIER (2003) Les hétérochronies du développement: un outil pour l'étude de la variabilité et des relations phylétiques? Exemple de *Nigericeras*,

Ammonitina du Crétacé supérieur africain. *Comptes Rendus Palevol*, 2: 535-546, 3 fig.

- COURVILLE, P. & C. CRONIER (2005) Diversity or disparity in the Jurassic (Upper Callovian) genus Kosmoceras (Ammonitina): a morphometric approach. Journal of Paleontology, 79 (5): 944-953, 8 fig.
- DACQUE, E. (1934) Wirbellose des Jura. In: GÜRICH, G. (Ed.), Leitfossilien, Berlin: 522 p., 48 pl.
- DAVIS, R. A., N. H. LANDMANN, J.-L. DOMMERGUES, D. MARCHAND & H. BUCHER (1996) - Mature modifications and Dimorphism in Ammonoid Cephalopods. *In:* LANDMANN N., K. TANABE & A. DAVIS (Eds), Ammonoid Paleobiology, *Topics in Geobiology*, Plenum Press, New York, 13: 463-539.
- DIETERICH, E. (1940) Stratigraphie und Ammonitenfauna des Weissen Jura in Württemberg. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg, Stuttgart, 96: 40 p., 6 fig., 2 pl.
- DISLER, C. (1941) Stratigraphischer Führer durch die geologischen Formationen im Gebiet zwischen Aare, Birs und Rhein. B. Wepf & Co. Edit., Basel: 37 p., 17 pl.
- DOMMERGUES, J.-L., B. DAVID & D. MARCHAND (1986) Les relations ontogenèse-phylogenèse: applications paléontologiques. *Geobios*, Lyon, 19 (3): 335-356, 9 fig., 2 tabl.
- DUMORTIER, E. & F. FONTANNES (1876) Description des Ammonites de la zone à Ammonites tenuilobatus de Crussol (Ardèche) et de quelques autres fossiles jurassiques nouveaux ou peu connus. Mémoires de l'Académie de Lyon, classe des Sciences, 21: 159 p., 19 pl.
- ENAY, R. (2009) Les faunes d'ammonites de l'Oxfordien au Tithonien et la biostratigraphie des Spiti-shales (Callovien supérieur-Tithonien) de Thakkhola, Népal central. *Documents des Laboratoires de géologie de Lyon*, 166: 351 p., 33 fig., 150 tabl., 52 pl.
- FAVRE, E. (1875) Description des fossiles du terrain Jurassique de la Montagne des Voirons. Mémoires de la Société Paléontologique Suisse, Genève, 2: 79 p., 8 pl.
- FAVRE, E. (1876) Description des fossiles du terrain oxfordien des Alpes fribourgeoises. Mémoires de la Société Paléontologique Suisse, Genève, 3: 75 p., 7 pl.
- FAVRE, E. (1877) La zone à Ammonites acanthicus dans les Alpes de la Suisse et de la Savoie. Mémoires de la Société paléontologique suisse, Genève, 4: 112 p., 9 pl.
- FINKEL, R. (1992) Eine Ammoniten-Fauna aus dem Kimmeridgium des nordöstlichen Keltiberikums (Spanien). Institut für Geologie und Paläontologie, University of Stuttgart (IGPS). Profil, 3: 262 p., 84 fig.
- FONTANNES, F. (1879) Description des ammonites des calcaires du Château de Crussol, Ardèche (zones à Oppelia

Plate XIII

All the specimens are $\times 0.5$.

- Fig. 1: Pile of Taramelliceras compsum (OPPEL, 1863) [M] & [m], Streblites weinlandi (OPPEL, 1863) [M], Aspidoceras acanthicum (OPPEL, 1863) and Discosphinctoides praenuntians (Fontannes, 1879). Specimen No. cru103, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 2: Pile of Taramelliceras compsum (OPPEL, 1863) [M] & [m], Aspidoceras acanthicum (OPPEL, 1863), Discosphinctoides praenuntians (FONTANNES, 1879) and Phylloceras praeposterium (FONTANNES, 1875). Specimen No. cr1101, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193. C. BAUDOUIN's collection.

tenuilobata et Waagenia beckeri). Georg, Lyon et Savy F., Paris, Edit.: 123 p., 13 pl.

- GOULD, S. J. (2002) *The Structure of Evolutionary Theory*. Harvard University press, Cambridge, Massachusetts: 1433 p.
- HANTZPERGUES, P., F. ATROPS & R. ENAY (1997) Zonation du Jurassique français par les Ammonites, Kimméridgien. *In* : CARIOU, E. & P. HANTZPERGUES (coord.). Biostratigraphie du Jurassique ouest-européen et méditerranéen : zonations parallèles et distribution des invertébrés et microfossiles. *Bulletin du Centre de Recherches Elf Exploration-Production*, Pau, 17: 87-96, 2 pl.
- HERBICH, F. (1878) Das Szeklerland mit Berücksichtigung der angrenzenden Landesteile. Mittheilungen aus dem Jahrbuche der Kön ungar geologischen Anstaldt, Budapest: 19-365, 18 fig., 20 pl.
- HÖLDER, H. (1955) Die Ammoniten-Gattung Taramelliceras im Sudwestdeutschen Unter-und Mittel-Malm. Morphologische und taxinomische Studien an Ammonites flexuosus Buch (Oppeliidae). Palaeontographica, Stuttgart, A, 106: 37-153, 182 fig., pl. 16-19.
- HÖLDER, H. & B. ZIEGLER (1959) Stratigraphische und faunistische Beziehungen im Weißen Jura (Kimeridgien) zwischen Süddeutschland und Ardeche. *Neues Jahrbuch für Geologie und Paläontologie*, Abhandlungen, Stuttgart, 108 (2): 150-214, 8 fig., pl. 17-22.
- HÖROLDT, U. (1964) Morphologie und Systematik der weissjurassischen Ammoniten-Gattungen Streblites und Ochetoceras unter besonderer Berücksichtigung des Hohlkiels. Inaugural-Dissertation, Universität zu Tübingen: 105 p., 35 fig., 6 pl.
- HUGUENIN, F. (1874) Note sur la zone à Ammonites tenuilobatus de Crussol (Ardèche). Bulletin de la Société géologique de France, Paris, (3) 2: 519-527.
- KENNEDY, W. J. & W. A. COBBAN (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. *The Palaeontological Association, Special Paper in Palaeontology*, London, 17: 94 p., 24 fig., 5 tabl., 11 pl.
- KEUPP, H. & F. RIEDEL (2009) Remarks on the possible function of the apophysis of the Middle Jurassic microconch ammonite *Ebrayiceras sulcatum* (ZIETEN, 1830), with a discussion on the palaeobiology of Aptychophora in general. *Neues Jahrbuch für Geologie und Paläontologie*, Abhandlungen, Stuttgart, DOI: 10.1127/0077-7749/2009/0026: 14 p., 8 fig., 1 tabl.
- LORIOL, P. DE (1876) Monographie paléontologique des couches à Ammonites tenuilobatus (Badener Schichten) de Baden (Argovie), première partie. Mémoires de la Société paléontologique suisse, Genève, 3: 32 p., 4 pl.
- LORIOL, P. DE (1877) Monographie paléontologique des couches à *Ammonites tenuilobatus* (Badener Schichten) de

Baden (Argovie), seconde partie. *Mémoires de la Société paléontologique suisse*, Genève, 4: 76 p., 8 pl.

- LORY, C. (1860-1864) Description géologique du Dauphiné (Isère, Drôme, Hautes-Alpes), pour servir à l'explication de la carte géologique de cette province. Paragraphes 23 & 24. Bulletin de la Société de statistique, des sciences naturelles et des arts industriels du département de l'Isère, Grenoble, 2^e sér., 7: 748 p., 33 fig., 5 pl.
- MAHÉ, J. & C. DEVILLERS (1983) La chrono-espèce, conception chrono-dynamique de l'espèce, conséquence d'une stratégie de rupture au niveau de la spéciation. *In*: Modalités, rythmes et mécanismes de l'évolution biologique. *Colloques internationaux du CNRS*, Paris: 175-180.
- MAKOWSKI, H. (1962) Problem of sexual dimorphism in ammonites. *Palaeontologia polonica*, Warszawa, 12: 143 p., 20 pl.
- MARCHAND, D. (1986) L'évolution des Cardioceratinae d'Europe occidentale dans leur contexte paléobiologique (Callovien supérieur-Oxfordien moyen). *Thèse de Doctorat, Université de Bourgogne* (unpublished), Dijon: 603 p., 22 pl.
- MARCHAND, D. & J.-L. DOMMERGUES (2008) L'approche paléontologique des concepts biologiques de l'espèce : défi pour l'étude de la paléobiodiversité. L'exemple des ammonites jurassiques. *In* : Peut-on classer le vivant ? Linné et la systématique aujourd'hui, D. PRAT, A. RAYNAL-ROQUES, *A. Roguenant* Edit., Éditions Belin, Paris: 203-214, 14 fig.
- MAYER, C. (1871) Description de Coquilles fossiles des terrains jurassiques (suite). *Journal de Conchyliologie*, Paris: 234-245, pl. 8-11.
- MAYR, E. (1974) Populations, espèces et évolution. Hermann, Paris: 496 p.
- MAYR E. (1982) The Growth of Biological Thought: Diversity, Evolution and Inheritance. Harvard University Press, Cambridge, Massachusetts: 974 p.
- MOOR, E. (2009) Oxydiscites und Cymaceras vom Schaffhauser Randen. Mitteilungen der Naturforschenden Gesellschaft Schaffhausen: 36 p., 11 pl.
- MORARD, A. & J. GUEX (2003) Ontogeny and covariation in the Toarcian genus Osperleioceras (Ammonoidea). Bulletin de la Société géologique de France, Paris, 174: 607-615.
- NEUMAYR, M. (1873) Die Fauna der Schichten mit Aspidoceras acanthicum. Abhandlungen der kaiserliche und köeniglichen geologischen Reichsanstalt, Wien, 5(6): 141-257, 13 pl.
- OLÓRIZ, F. (1978) El Kimmeridgiense-Tithonico inferior en el Sector Central de las Cordilleras Béticas (Zona Subbética). Paleontología. Bioestratigrafía. Tesis doctorales de la Universidad de Granada: 758 p., 57 pl.

OPPEL, A. (1863) - Über jurassische Cephalopoden, III. Paläon-

Plate XIV

All the specimens are $\times 0.5$.

- Fig. 1: Pile of *Taramelliceras compsum* (OPPEL, 1863) [M] & [m] and *Streblites weinlandi* (OPPEL, 1863) [m]. Specimen No. cru101, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.
- Fig. 2: Pile of *Taramelliceras compsum* (OPPEL, 1863) [M] & [m], *Streblites weinlandi* (OPPEL, 1863) [M] and *Aspidoceras acanthicum* (OPPEL, 1863). Specimen No. cru101, Acanthicum Zone, Mount Crussol (Ardèche, France), bed No. 193 or 195. P. BOSELLI's collection.

tologische Mitteilungen aus dem Museum des Koeniglich bayerischen Staates, Stuttgart: 163-266, pl. 51-74.

- OPPEL, A. (1865) Geognostische Studien in dem Ardèche Departement, V. Paläontologische Mitteilungen aus dem Museum des Koeniglich bayerischen Staates, Stuttgart: 305-322.
- PALFRAMAN, D.F.B. (1966) Variation and ontogeny of some Oxfordian ammonites: *Taramelliceras richei* (de Loriol) and *Creniceras renggeri* (Oppel) from Woodham, Buckinghamshire. *Palaeontology*, London, 9 (2): 290-311, 15 fig., pl. 48-52.
- PAVIA, G. & S. CRESTA (Eds.) (2002) Revision of Jurassic ammonites of the Gemmellaro collections. *Quaderni del Museo geologico "G G. Gemmellaro*", dipartimento di geologia e geodesia, universita di Palermo, 6: 406 p, 242 fig.
- QUENSTEDT, A. (1849) Die Cephalopoden, Petrefaktenkunde Deutschlands. L. F. Fues Edit., Tübingen: 580 p., 36 pl.
- QUENSTEDT, A. (1858) Der Jura. Laupp, Tübingen: 842 p., 100 pl.
- QUENSTEDT, A. (1887-88) *Die Ammoniten des Schwäbischen Jura*. III, Band. Der Weiβe Jura, Stuttgart (Schweizerbart): 817-1123, pl. 91-126.
- QUEREILHAC, P. (2009) La Sous-Famille des Taramelliceratinae (Ammonitina, Haploceratoidea, Oppeliidae) de l'Oxfordien moyen et supérieur (Zone à *Plicatilis*, Sous-Zone à *Vertebrale* - Zone à *Bimammatum*, Sous-Zone à *Berrense*) du nord de la Vienne, France (Province subméditerranéenne). *Carnets de Géologie / Notebooks on Geology*, Brest, Mémoire 2009/02 (CG2009_M02): 46 p., 4 fig., 27 pl.
- REINECKE, J. C. M. (1818) Maris Protogaei Nautilos et Argonautas vulgo Cornua Ammonis in agro corbugica et vicino reperiundos, simul observationes de Fossilium Protypis. *Coburgi, ex Officina et in Commissis L.C.A. Ahlii.*: 89 p., 13 pl.
- RICHE, A. & F. ROMAN (1921) La montagne de Crussol, étude stratigraphique et paléontologique. *Travaux du laboratoire de géologie de la faculté des sciences de Lyon*, 1 : 196 p., 8 pl.
- ROMAN, F. (1950) Géologie régionale de la France. VI. Le Bas-Vivarais. Actualités scientifiques et industrielles, Paris, 1090: 150 p., 35 fig.
- SAPUNOV, I.G. (1979) Les Fossiles de Bulgarie. III Jurassique supérieur. Ammonoidea. Académie Bulgare des Sciences, Sofia: 237 p., 59 pl.
- SARTI, C. (1986) Fauna e biostratigrafia del Rosso Ammonitico del Trentino centrale (Kimmeridgiano-Titoniano). *Bollettino della Società Paleontologica Italiana*, Modena 1984, 23 (3): 473-514, 7 pl.
- SARTI, C. (1993) Il Kimmeridgiano delle Prealpi veneto trentine, fauna e biostratigrafia. *Memorie del Museo Civico di Storia Naturale di Verona*, 2 (5): 5-203, 29 pl.
- SAUTIER, N. (1854) Note géologique sur la montagne de Crussol (Ardèche). Bulletin de la société géologique de France, Paris, 2^e série, 11: 716-723.
- SCHAIRER, G. (1972) Taramelliceras, Glochiceras, Ochetoceras (Haplocerataceae, Ammonoidea) aus der platynota-Zone (unterstes Unterkimmeridge) der Fränkischen Alb (Bayern). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, Munich, 12: 33-56, 11 fig., 2 pl.
- SCHAIRER, G. (1984) Die Cephalopodenfauna der Schwammkalke von Bilburg (Oberoxford, Südliche Frankenalb):

Glochiceras, *Ochetoceras* (Ammonoidea, Haploceratacea) *Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie*, Munich, 24: 27-38, 3 fig., 2 pl.

- SCHLEGELMILCH, R. (1994) Die Ammoniten des süddeutschen Malms. Gustav Fischer Ed., Stuttgart, Jena & New York: 297 p., 73 pl.
- SCHWEIGERT, V. G. (1999) Neue biostratigraphische Grundlagen zur Datierung des nordwestdeutschen höheren Malm. Osnabrücker Naturwissenschaftliche Mitteilungen, 25: 25-40, 5 fig.
- SCHWEIGERT, V. G. & V. DIETZE (1998) Revision der dimorphen Ammonitengattungen *Phlycticeras* Hyatt -*Oecoptychius* Neumayr (Strigoceratidae, Mitteljura). *Stuttgarter Beiträge zur Naturkunde*, *Serie B*, Stuttgart, 269: 59 p., 2 fig., 10 pl.
- SPATH, L. F. (1927-1933) Revision of the Jurassic Cephalopod Fauna of Katchh (Cutch), India. *Palaeontologia Indica*, Calcutta, n.s., 22, 2: 945 p.
- TINTANT, H. (1952) Principes de la systématique. *In* : PIVE-TEAU, J., *Traité de Paléontologie*, Masson Ed., Paris, 1: 41-64.
- TINTANT, H. (1963) Les Kosmoceratidés du Callovien inférieur et moyen d'Europe occidentale. Thèse, Presse Universitaire de France, Paris: 500 p.
- TINTANT, H. (1965) La notion d'espèce en paléontologie. *Mises à jour scientifique* 1, Paris: 273-294.
- TINTANT, H. (1966) « Principes et méthodes d'une paléontologie moderne ». Bulletin d'Information des Géologues du Bassin de Paris, 7: 9-19.
- TINTANT, H. (1969) « L'espèce et le temps. Point de vue du paléontologiste ». Bulletin de la Société Zoologique de France, Paris, 94 (4): 559-576.
- TINTANT, H. (1976) Le polymorphisme intraspécifique en paléontologie (exemples pris chez les Ammonites). *Halio-tis*, Paris, 6: 49-69, pl. 1-2.
- TINTANT, H. (1980) Problématique de l'espèce en paléontologie. In : Les problèmes de l'espèce dans le monde animal. Mémoire de la Société Géologique de France, Paris, 40: 321-372.
- TRAUTH, F. (1938) Die Lamellaptychi des Oberjura und der Unterkreide. *Palaeontographica*, Stuttgart, A, 88: 115-229, pl. 9-14.
- WEGELE, L. (1929) Stratigraphische und faunistische Untersuchungen im Oberoxford und Unterkimmeridge Mittelfrankens. *Palaeontographica*, Stuttgart, 71-72: 94 p., 11 pl.
- WESTERMANN, G.E.G. (1966) Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Stuttgart, 124: 289-312.
- ZIEGLER, B. (1956) Creniceras dentatum [Ammonitacea] im Mittel-Malm Südwestdeutschlands. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Stuttgart: 553-575, 13 fig.
- ZIEGLER, B. (1958) Monographie der Ammonitengattung Glochiceras im epikontinentalen Weissjura Mitteleuropas. Palaeontographica, Stuttgart, A, 110 (4-6): 93-164, 66 fig, pl. 10-16.
- ZIEGLER, B. (1974) Ober Dimorphismus und Verwandtschaftsbeziehungen bei "Oppelien" des oberen Juras (Ammonoidea: Haplocerataceae). *Stuttgarter Beiträge zur Naturkunde, Serie B*, Stuttgart, 11: 39 p., 19 fig., 2 pl.

Accepté octobre 2011

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	80	11	-	44	0,138	-	0,550	-	0,250	9	48	11	
1002	68	66	10	21	36	0,152	0,318	0,545	0,583	0,278	8	36	9	102
cri002	132	55	9	18	30	0,164	0,327	0,545	0,600	0,300	11	33	10	195
	163	c51	8	16	27	0,157	0,314	0,529	0,593	0,296	-	-	-	
	0	64	9	-	36	0,141	-	0,563	-	0,250	12	-	12	
1002	58	54	8	17	30	0,148	0,315	0,556	0,567	0,267	11	-	12	102
crio05	132	43	7	14	24	0,163	0,326	0,558	0,583	0,292	10	-	11	195
	180	c38	7	12	20	0,184	0,316	0,526	0,600	0,350	-	-	-	
	0	82	10	-	46	0,122	-	0,561	-	0,217	8	42	9	
cr1004	95	63	9	18	35	0,143	0,286	0,556	0,514	0,257	10	41	10	193
	140	55	9	17	30	0,164	0,309	0,545	0,567	0,300	9	37	10	
	0	108	12	32	58	0,111	0,296	0,537	0,552	0,207	-	-	-	
crl005a	90	80	10	25	45	0,125	0,313	0,563	0,556	0,222	-	36	-	193
	111	76	10	23	43	0,132	0,303	0,566	0,535	0,233	-	35	-	
	0	53	8	17	30	0,151	0,321	0,566	0,567	0,267	5	-	10	
10051	90	41	7	-	22	0,171	-	0,537	-	0,318	7	-	6	102
criuusb	148	34	6	-	18	0,176	-	0,529	-	0,333	5	31	2	175
	180	c30	6	c9	16	0,100	0,300	0,533	0,563	0,375	-	-	1	
	0	79	11	-	43	0,139	-	0,544	-	0,256	13	43	9	
1007	90	61	9	-	33	0,148	-	0,541	-	0,273	12	40	9	102
criuu6a	147	52	8	-	29	0,154	-	0,558	-	0,276	12	37	10	193
	180	c48	8	-	26	0,167	-	0,542	-	0,308	-	-	-	
	0	23	7	-	10	0,304	-	0,435	-	0,700	5	29	0	
ar1006h	90	18	5	-	8	0,278	-	0,444	-	0,625	0	19	0	102
criuuod	133	15	4	-	7	0,267	-	0,467	-	0,571	0	12	0	195
	180	c14	4	-	6	0,286	-	0,429	-	0,667	0	4	0	
	0	48	7	17	28	0,146	0,354	0,583	0,607	0,250	12	36	14	
cr1007	76	37	7	13	21	0,189	0,351	0,568	0,619	0,333	10	32	14	193
	128	33	6	11	17	0,182	0,333	0,515	0,647	0,353	7	30	11	
	0	79	10	-	44	0,127	-	0,557	-	0,227	12	-	c13	
cr1008	90	61	9	19	34	0,148	0,311	0,557	0,559	0,265	13	36	13	193
	133	54	8	17	29	0,148	0,315	0,537	0,586	0,276	13	34	14	
	0	133	17	-	70	0,128	-	0,526	-	0,243	c3	c21	c5	
1000-	90	108	15	-	59	0,139	-	0,546	-	0,254	c4	c39	5	102
cri009a	145	91	11	-	51	0,121	-	0,560	-	0,216	c5	38	3	195
	180	c80	10		45	0,125	_	0,563	-	0,222	-	-	-	
	0	62	8	-	36	0,129	-	0,581	-	0,222	9	33	9	
10001	90	c48	7	14	26	0,146	0,292	0,542	0,538	0,269	c6	29	8	102
criuu9b	110	c42	7	13	24	0,167	0,310	0,571	0,542	0,292	c4	30	c9	193
	180	c35	6	9	19	0,171	0,257	0,543	0,474	0,316	-	-	-	

Table 1: measurements of *Taramelliceras compsum* (OPPEL, 1863) [M].

No.	α	D	U	W	Η	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	108	14	-	57	0,130	-	0,528	-	0,246	6	c39	12	
10.1.0	90	87	11	-	48	0,126	-	0,552	-	0,229	8	41	11	102
criotoa	123	79	10	-	44	0,127	-	0,557	-	0,227	8	39	9	193
	160	c66	9	20	39	0,136	0,303	0,591	0,513	0,231	-	-	-	
	0	142	14	41	79	0,099	0,289	0,556	0,519	0,177	6	17	8	
crl011	90	113	11	34	65	0,097	0,301	0,575	0,523	0,169	8	37	-	193
	117	104	11	32	61	0,106	0,308	0,587	0,525	0,180	8	42	-	
	0	99	12	-	54	0,121	-	0,545	-	0,222	9	34	5	
crl012a	90	74	11	24	42	0,149	0,324	0,568	0,571	0,262	10	40	8	193
	112	71	10	22	39	0,141	0,310	0,549	0,564	0,256	10	38	8	
	0	125	16	34	68	0,128	0,272	0,544	0,500	0,235	4	c7	9	
crl013	70	103	12	c28	55	0,117	0,272	0,534	0,509	0,218	8	c23	10	193
	131	88	11	27	48	0,125	0,307	0,545	0,563	0,229	9	c34	9	
	0	51	8	16	29	0,157	0,314	0,569	0,552	0,276	13	41	12	
crl014	82	40	7	13	22	0,175	0,325	0,550	0,591	0,318	12	36	13	193
	116	37	6	12	20	0,162	0,324	0,541	0,600	0,300	10	35	11	
	0	91	11	-	48	0,121	-	0,527	-	0,229	17	46	11	
1017	90	74	9	23	42	0,122	0,311	0,568	0,548	0,214	13	42	7	102
crl016a	127	66	8	21	36	0,121	0,318	0,545	0,583	0,222	10	40	7	193
	180	c57	8	19	32	0,140	0,333	0,561	0,594	0,250	-	-	-	
	0	48	9	-	26	0,188	-	0,542	-	0,346	7	28	c12	
crl016b	40	43	8	-	22	0,186	-	0,512	-	0,364	7	27	c12	193
	90	c36	7	-	17	0,194	-	0,472	-	0,412	7	25	11	
	0	45	7	14	25	0,156	0,311	0,556	0,560	0,280	7	28	10	
crl017	90	34	6	10	18	0,176	0,294	0,529	0,556	0,333	4	22	2	193
	132	30	5	9	15	0,167	0,300	0,500	0,600	0,333	4	21	1	
	0	45	8	15	23	0,178	0,333	0,511	0,652	0,348	10	39	12	
crl018	90	35	7	11	17	0,200	0,314	0,486	0,647	0,412	8	31	12	193
	117	32	7	11	16	0,219	0,344	0,500	0,688	0,438	8	27	12	
	0	59	10	20	32	0,169	0,339	0,542	0,625	0,313	11	35	14	
crl019	90	46	9	16	24	0,196	0,348	0,522	0,667	0,375	9	30	13	193
	160	38	8	13	19	0,211	0,342	0,500	0,684	0,421	c7	28	15	
	0	71	11	c22	38	0,155	0,310	0,535	0,579	0,289	10	35	4	
cr1020	90	55	9	17	30	0,164	0,309	0,545	0,567	0,300	6	29	4	193
	120	50	8	16	26	0,160	0,320	0,520	0,615	0,308	6	28	4	
	0	65	9	-	37	0,138	-	0,569	-	0,243	-	38	10	
10.01	90	49	8	15	27	0,163	0,306	0,551	0,556	0,296	9	31	11	102
crl021	122	44	8	13	23	0,182	0,295	0,523	0,565	0,348	10	32	12	193
	170	c40	-	12	20	-	0,300	0,500	0,600	-	-	-	-	
	0	76	10	-	42	0,132	-	0,553	-	0,238	10	48	9	
crl023a	90	58	9	-	32	0,155	-	0,552	-	0,281	9	9 42 9 1 9 37 10	193	
	163	47	8	-	25	0,170	-	0,532	-	0,320	9			

No.	α	D	U	W	Η	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	76	10	-	42	0,132	-	0,553	-	0,238	12	36	11	
1024	90	61	9	-	33	0,148	-	0,541	-	0,273	9	41	10	102
cr1024	136	53	8	16	29	0,151	0,302	0,547	0,552	0,276	10	40	10	193
	160	49	8	14	26	0,163	0,286	0,531	0,538	0,308	-	-	-	
	0	98	12	30	53	0,122	0,306	0,541	0,566	0,226	9	44	5	
crl025	90	76	11	25	43	0,145	0,329	0,566	0,581	0,256	8	39	12	193
	138	66	9	22	37	0,136	0,333	0,561	0,595	0,243	8	34	16	
	0	103	13	31	57	0,126	0,301	0,553	0,544	0,228	10	26	5	
cr1026	90	81	11	26	45	0,136	0,321	0,556	0,578	0,244	11	36	6	193
	139	70	10	23	38	0,143	0,329	0,543	0,605	0,263	12	38	9	
	0	58	9	-	31	0,155	-	0,534	-	0,290	11	34	14	
1027	90	44	8	14	23	0,182	0,318	0,523	0,609	0,348	11	30	14	105
cri027	140	38	7	12	20	0,184	0,316	0,526	0,600	0,350	8	26	14	195
	169	37	7	10	18	0,189	0,270	0,486	0,556	0,389	-	-	-	
	0	64	8	c19	36	0,125	0,297	0,563	0,528	0,222	18	50	13	
crl028	75	51	7	16	29	0,137	0,314	0,569	0,552	0,241	17	42	14	193
	130	43	7	c12	24	0,163	0,279	0,558	0,500	0,292	-	-	14	
	0	72	7	-	41	0,097	-	0,569	-	0,171	18	43	9	
1020	90	55	6	c17	31	0,109	0,309	0,564	0,548	0,194	15	42	12	102
cr1029	150	46	6	15	26	0,130	0,326	0,565	0,577	0,231	13	41	15	193
	160	45	6	14	25	0,133	0,311	0,556	0,560	0,240	-	-	-	
	0	54	8	17	30	0,148	0,315	0,556	0,567	0,267	13	36	10	
cr1030	90	41	7	13	23	0,171	0,317	0,561	0,565	0,304	11	31	9	193
	122	37	7	12	20	0,189	0,324	0,541	0,600	0,350	10	30	8	
	0	81	10	25	44	0,123	0,309	0,543	0,568	0,227	6	40	9	
crl031	90	63	9	20	34	0,143	0,317	0,540	0,588	0,265	6	39	7	193
	139	55	8	17	30	0,145	0,309	0,545	0,567	0,267	7	39	8	
	0	57	9	-	31	0,158	-	0,544	-	0,290	9	36	9	
crl032a	90	44	8	-	24	0,182	-	0,545	-	0,333	7	32	9	193
	127	40	7	-	21	0,175	-	0,525	-	0,333	6	30	8	
	0	38	6	-	20	0,158	-	0,526	-	0,300	5	32	10	
crl032b	90	29	5	-	16	0,172	-	0,552	-	0,313	6	29	4	193
	110	27	4	-	14	0,148	-	0,519	-	0,286	5	28	3	
	0	112	11	30	65	0,098	0,268	0,580	0,462	0,169	9	31	2	
cr1033	65	92	11	25	50	0,120	0,272	0,543	0,500	0,220	9	41	-	193
	143	74	10	23	41	0,135	0,311	0,554	0,561	0,244	10	38	c12	
	0	c126	c21	-	66	0,167	-	0,524	-	0,318	6	6	0	
cr1034	80	99	14	29	54	0,141	0,293	0,545	0,537	0,259	9	23	2	193
	121	90	13	26	48	0,144	0,289	0,533	0,542	0,271	8	32	4	
	0	77	c9	-	c41	0,117	-	0,532	-	0,220	c10	40	8	
crl035a	90	59	9	19	33	0,153	0,322	0,559	0,576	0,273	12	43	12	192 ?
	165	47	8	16	26	0,170	0,340	0,553	0,615	0,308	11	39	12	

No.	α	D	U	W	Η	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
crl035b	0	68	c10	-	36	0,147	-	0,529	-	0,278	15	40	11	192 ?
	0	50	7	-	27	0,140	-	0,540	-	0,259	6	33	c15	
1026	90	37	7	-	19	0,189	-	0,514	-	0,368	5	26	c11	102
criusoa	112	35	7	-	18	0,200	-	0,514	-	0,389	5	28	c10	193
	170	c33	6	-	16	0,182	-	0,485	-	0,375	-	-	-	
	0	62	9	-	34	0,145	-	0,548	-	0,265	10	39	9	
cr1037	95	48	8	14	26	0,167	0,292	0,542	0,538	0,308	8	28	10	193
	140	42	8	13	22	0,190	0,310	0,524	0,591	0,364	8	26	11	
	0	55	8	-	30	0,145	-	0,545	-	0,267	13	43	11	
ar1029	90	43	7	13	23	0,163	0,302	0,535	0,565	0,304	14	34	10	102
C11038	144	37	6	11	20	0,162	0,297	0,541	0,550	0,300	13	31	10	195
	156	c31	5	9	15	0,161	0,290	0,484	0,600	0,333	-	-	-	
	0	50	8	16	27	0,160	0,320	0,540	0,593	0,296	14	41	14	
cr1039	50	43	7	c14	23	0,163	0,326	0,535	0,609	0,304	13	38	13	193
	110	37	7	c12	19	0,189	0,324	0,514	0,632	0,368	11	34	12	
	0	62	7	21	35	0,113	0,339	0,565	0,600	0,200	12	47	14	
10.40	90	47	6	17	26	0,128	0,362	0,553	0,654	0,231	12	37	11	102
cr1040	125	42	6	15	23	0,143	0,357	0,548	0,652	0,261	9	35	11	193
	180	37	-	12	20	-	0,324	0,541	0,600	-	-	-	-	
	0	40	8	12	20	0,200	0,300	0,500	0,600	0,400	9	25	13	
cr1041	101	29	7	9	14	0,241	0,310	0,483	0,643	0,500	7	22	11	193
	150	26	7	8	12	0,269	0,308	0,462	0,667	0,583	6	23	8	
	0	47	7	14	25	0,149	0,298	0,532	0,560	0,280	7	31	7	
cr1042	90	37	6	11	20	0,162	0,297	0,541	0,550	0,300	5	26	3	193
	128	33	6	10	18	0,182	0,303	0,545	0,556	0,333	3	24	2	
	0	52	7	17	29	0,135	0,327	0,558	0,586	0,241	15	40	12	
or10.42	40	45	7	15	25	0,156	0,333	0,556	0,600	0,280	12	35	10	102
011045	90	39	7	12	21	0,179	0,308	0,538	0,571	0,333	6	29	6	195
	120	35	6	11	18	0,171	0,314	0,514	0,611	0,333	6	27	4	
	0	36	11	11	16	0,306	0,306	0,444	0,688	0,688	19	22	7	
cr1044	95	27	9	8	12	0,333	0,296	0,444	0,667	0,750	13	20	3	193
	122	23	7	7	10	0,304	0,304	0,435	0,700	0,700	9	19	2	
	0	51	9	-	27	0,176	-	0,529	-	0,333	c9	c29	11	
crl045a	90	38	7	c12	20	0,184	0,316	0,526	0,600	0,350	10	c28	9	193
	137	33	7	11	17	0,212	0,333	0,515	0,647	0,412	9	29	5	
	0	20	4	6	9	0,200	0,300	0,450	0,667	0,444	1	23	0	
crl045b	90	16	3	5	7	0,188	0,313	0,438	0,714	0,429	0	12	0	193
	118	14	3	4	7	0,214	0,286	0,500	0,571	0,429	0	8	0	
	0	32	6	10	17	0,188	0,313	0,531	0,588	0,353	7	28	5	
or 1046	90	24	5	8	12	0,208	0,333	0,500	0,667	0,417	4	25	1	102
crl046	148	21	4	6	10	0,190	0,286	0,476	0,600	0,400	2	21	0	193
	195	19	4	5	9	0,211	0,263	0,474	0,556	0,444	0	14	0	

No.	α	D	U	W	Η	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	38	8	12	19	0,211	0,316	0,500	0,632	0,421	6	26	9	
cr1047	90	30	6	9	15	0,200	0,300	0,500	0,600	0,400	6	26	6	193
	120	27	6	8	13	0,222	0,296	0,481	0,615	0,462	6	24	4	
	0	72	11	-	39	0,153	-	0,542	-	0,282	9	35	9	
10.49	43	65	10	-	35	0,154	-	0,538	-	0,286	9	38	9	102
cr1048a	72	59	9	-	32	0,153	-	0,542	-	0,281	8	36	8	193
	150	c48	8	-	25	0,167	-	0,521	-	0,320	-	-	-	
	0	40	7	-	21	0,175	-	0,525	-	0,333	6	28	10	
crl048b	90	31	7	-	16	0,226	-	0,516	-	0,438	6	27	4	193
	112	29	6	-	14	0,207	-	0,483	-	0,429	5	26	3	
	0	45	7	14	24	0,156	0,311	0,533	0,583	0,292	9	30	9	
or1040	90	35	7	11	19	0,200	0,314	0,543	0,579	0,368	5	29	4	102
011049	145	30	6	9	15	0,200	0,300	0,500	0,600	0,400	4	30	2	193
	180	27	5	8	13	0,185	0,296	0,481	0,615	0,385	2	c28	0	
	0	69	10	-	38	0,145	-	0,551	-	0,263	10	43	-	
	90	56	9	-	29	0,161	-	0,518	-	0,310	10	35	11	102
criu52a	135	49	9	-	26	0,184	-	0,531	-	0,346	10	33	11	193
	156	c44	8	-	24	0,182	-	0,545	-	0,333	-	-	-	
	0	74	12	-	39	0,162	-	0,527	-	0,308	12	38	10	
crl053a	108	54	9	-	28	0,167	-	0,519	-	0,321	11	41	9	193
	144	48	9	-	25	0,188	-	0,521	-	0,360	9	40	9	
	0	26	6	-	13	0,231	-	0,500	-	0,462	6	28	c6	
or1054	59	23	5	-	11	0,217	-	0,478	-	0,455	3	26	2	102
0110.54	110	20	4	-	9	0,200	-	0,450	-	0,444	1	28	0	175
	151	18	4	-	8	0,222	-	0,444	-	0,500	0	26	0	
	0	95	13	-	50	0,137	-	0,526	-	0,260	10	39	10	
cr10660	53	83	11	-	45	0,133	-	0,542	-	0,244	10	38	9	103
ciioooa	113	c69	9	-	39	0,130	-	0,565	-	0,231	9	39	11	175
	135	c64	9	-	37	0,141	-	0,578	-	0,243	9	37	10	
	0	61	9	-	33	0,148	-	0,541	-	0,273	11	40	12	
crl066b	68	50	8	13	27	0,160	0,260	0,540	0,481	0,296	9	35	9	193
	125	43	8	-	23	0,186	-	0,535	-	0,348	8	32	6	
	0	32	6	9	16	0,188	0,281	0,500	0,563	0,375	c7	31	3	
cr1069a	90	25	5	8	12	0,200	0,320	0,480	0,667	0,417	4	24	1	103
cilooja	128	22	5	7	11	0,227	0,318	0,500	0,636	0,455	3	24	0	155
	180	c19	4	-	10	0,211	-	0,526	-	0,400	1	-	0	
	0	45	7	-	24	0,156	-	0,533	-	0,292	8	28	10	
crl076b	56	39	7	12	21	0,179	0,308	0,538	0,571	0,333	7	24	8	103
010700	111	35	6	11	18	0,171	0,314	0,514	0,611	0,333	7	26	5	173
	180	c28	-	-	15	-	-	0,536	-	-	-	-	0	

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	52	8	-	29	0,154	-	0,558	-	0,276	11	34	10	
crl077a	87	42	7	-	22	0,167	-	0,524	-	0,318	9	30	9	193
	125	38	7	-	19	0,184	-	0,500	-	0,368	8	28	9	
	0	41	7	-	21	0,171	-	0,512	-	0,333	10	37	8	
cr1078	50	36	7	c10	19	0,194	0,278	0,528	0,526	0,368	10	35	7	193
	108	29	-	c9	16	-	0,250	0,552	0,474	-	7	30	4	
	0	37	6	12	20	0,162	0,324	0,541	0,600	0,300	6	24	7	
crl082a	72	30	5	-	15	0,167	-	0,500	-	0,333	4	22	2	193
	129	26	4	-	13	0,154	-	0,500	-	0,308	2	21	0	
	0	172	21	-	85	0,122	-	0,494	-	0,247	0	0	0	
1101	90	145	17	-	79	0,117	-	0,545	-	0,215	1	14	3	102
cr1101a	152	125	15	-	70	0,120	-	0,560	-	0,214	4	27	4	193
	190	c115	14	-	64	0,122	-	0,557	-	0,219	-	-	-	
	0	87	10	-	49	0,115	-	0,563	-	0,204	6	39	8	
crl101b	90	67	9	-	38	0,134	-	0,567	-	0,237	8	33	-	193
	140	58	8	-	31	0,138	-	0,534	-	0,258	9	29	-	
crl101c	0	85	9	-	45	0,106	-	0,529	-	0,200	8	41	8	193
	0	21	5	-	10	0,238	-	0,476	-	0,500	2	18	0	
crl101d	90	17	4	-	8	0,235	-	0,471	-	0,500	0	5	0	193
	115	15	3	-	7	0,200	-	0,467	-	0,429	0	2	0	
	0	111	13	27	60	0,117	0,243	0,541	0,450	0,217	7	47	3	
1100	75	90	12	-	51	0,133	-	0,567	-	0,235	11	46	3	102
cr1102a	139	76	11	-	42	0,145	-	0,553	-	0,262	9	42	4	193
	202	63	9	-	35	0,143	-	0,556	-	0,257	-	-	-	
	0	103	12	-	56	0,117	-	0,544	-	0,214	13	42	-	
	44	91	11	-	49	0,121	-	0,538	-	0,224	14	40	-	
crl102b	91	76	10	-	42	0,132	-	0,553	-	0,238	13	37	9	193
	136	67	9	-	38	0,134	-	0,567	-	0,237	-	-	-	
	0	41	7	-	21	0,171	-	0,512	-	0,333	6	26	9	
crl103a	50	36	7	-	19	0,194	-	0,528	-	0,368	6	27	6	193
	110	31	6	-	15	0,194	-	0,484	-	0,400	5	26	3	
	0	36	7	10	19	0,194	0,278	0,528	0,526	0,368	7	25	2	
	118	29	6	-	14	0,207	-	0,483	-	0,429	5	26	0	
crl103b	132	25	5	-	12	0,200	-	0,480	-	0,417	4	24	0	193
	165	21	5	6	11	0,238	0,286	0,524	0,545	0,455	3	-	0	
	0	78	9	25	42	0,115	0,321	0,538	0,595	0,214	18	38	9	
	65	67	8	22	38	0,119	0,328	0,567	0,579	0,211	15	45	9	
cr1108	110	60	7	19	33	0,117	0,317	0,550	0,576	0,212	11	40 9	193	
	138	55	7	18	31	0,127	0,327	0,564	0,581	0,226	-	-	-	

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	83	10	-	46	0,120	-	0,554	-	0,217	15	44	5	
1100	71	69	9	-	39	0,130	-	0,565	-	0,231	13	41	-	102
cr1109	148	56	9	-	31	0,161	-	0,554	-	0,290	11	39	-	193
	180	49	-	16	27	-	0,327	0,551	0,593	-	-	-	-	
	0	57	9	c14	31	0,158	0,246	0,544	0,452	0,290	9	32	10	
crl110	38	51	9	14	27	0,176	0,275	0,529	0,519	0,333	8	32	12	193
	78	45	8	13	24	0,178	0,289	0,533	0,542	0,333	9	33	12	
	0	67	9	-	37	0,134	-	0,552	-	0,243	9	38	9	
oul111	68	55	9	17	30	0,164	0,309	0,545	0,567	0,300	10	36	9	102
	151	43	8	14	23	0,186	0,326	0,535	0,609	0,348	9	32	10	195
	170	41	8	13	22	0,195	0,317	0,537	0,591	0,364	-	-	-	
	0	50	8	-	28	0,160	-	0,560	-	0,286	10	36	10	
crl112	65	40	7	13	22	0,175	0,325	0,550	0,591	0,318	10	34	10	193
	133	34	6	10	18	0,176	0,294	0,529	0,556	0,333	8	32	7	
	0	c59	-	-	32	-	-	0,542	-	-	8	30	11	
1112	70	49	7	-	27	0,143	-	0,551	-	0,259	9	29	12	102
criii5	148	39	6	-	21	0,154	-	0,538	-	0,286	8	27	10	193
	188	34	6	-	19	0,176	-	0,559	-	0,316	-	-	-	
	0	53	8	-	29	0,151	-	0,547	-	0,276	17	49	14	
1114	60	43	6	14	24	0,140	0,326	0,558	0,583	0,250	12	38	11	102
cr1114	120	36	6	11	19	0,167	0,306	0,528	0,579	0,316	7	27	8	193
	180	c31	6	9	16	0,194	0,290	0,516	0,563	0,375	-	-	-	
	0	51	7	-	28	0,137	-	0,549	-	0,250	8	41	-	
crl115	79	41	6	13	23	0,146	0,317	0,561	0,565	0,261	9	39	-	193
	132	34	6	11	19	0,176	0,324	0,559	0,579	0,316	8	36	7	
	0	47	9	-	29	0,191	-	0,617	-	0,310	7	28	6	
crl116	70	38	7	12	20	0,184	0,316	0,526	0,600	0,350	8	27	4	193
	146	31	7	9	16	0,226	0,290	0,516	0,563	0,438	5	26	1	
	0	32	7	-	16	0,219	-	0,500	-	0,438	8	26	12	
or11170	60	28	7	-	13	0,250	-	0,464	-	0,538	8	28	6	102
ciiii / a	125	23	6	-	10	0,261	-	0,435	-	0,600	6	29	1	195
	155	20	5	-	9	0,250	-	0,450	-	0,556	5	-	0	
	0	16	4	-	7	0,250	-	0,438	-	0,571	0	10	0	
crl117c	75	13	3	-	6	0,231	-	0,462	-	0,500	0	3	0	193
	130	11	3	-	5	0,273	-	0,455	-	0,600	0	0	0	
	0	32	6	9	17	0,188	0,281	0,531	0,529	0,353	11	33	8	
crl118	50	28	5	8	14	0,179	0,286	0,500	0,571	0,357	10	30	3	193
	100	24	5	7	12	0,208	0,292	0,500	0,583	0,417	7	26	0	
	0	78	8	24	43	0,103	0,308	0,551	0,558	0,186	8	39	9	
crl135	56	65	7	21	37	0,108	0,323	0,569	0,568	0,189	8	38	8	193
	118	54	7	18	30	0,130	0,333	0,556	0,600	0,233	9	35	10	

No.	α	D	U	W	Η	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	58	8	18	32	0,138	0,310	0,552	0,563	0,250	11	32	9	
1126	28	54	7	17	30	0,130	0,315	0,556	0,567	0,233	10	31	10	102
cr1150	90	44	6	14	25	0,136	0,318	0,568	0,560	0,240	10	29	7	193
	148	39	6	12	21	0,154	0,308	0,538	0,571	0,286	9	29	4	
	0	38	6	-	20	0,158	-	0,526	-	0,300	5	26	c7	
crl137	60	32	6	9	17	0,188	0,281	0,531	0,529	0,353	4	25	4	193
	135	26	4	7	13	0,154	0,269	0,500	0,538	0,308	4	22	1	
	0	57	9	-	30	0,158	-	0,526	-	0,300	6	26	10	
arl140a	87	44	8	-	23	0,182	-	0,523	-	0,348	6	21	10	102
cm40a	142	38	8	-	19	0,211	-	0,500	-	0,421	6	19	10	195
	180	33	7	-	17	0,212	-	0,515	-	0,412	-	-	-	
	0	42	7	-	23	0,167	-	0,548	-	0,304	9	30	8	
crl140b	80	33	6	-	17	0,182	-	0,515	-	0,353	6	27	8	193
	150	29	6	-	14	0,207	-	0,483	-	0,429	2	26	6	
	0	78	10	-	43	0,128	-	0,551	-	0,233	8	41	9	
001	90	59	8	-	33	0,136	-	0,559	-	0,242	8	38	11	105
cru001a	150	49	7	-	27	0,143	-	0,551	-	0,259	6	32	11	195
	170	47	7	-	25	0,149	-	0,532	-	0,280	-	-	-	
0011	0	c40	7	-	21	0,175	-	0,525	-	0,333	3	23	3	105
cru001b	70	34	6	11	17	0,176	0,324	0,500	0,647	0,353	2	21	1	195
	0	21	4	6	11	0,190	0,286	0,524	0,545	0,364	4	23	1	
cru002a	85	17	3	5	9	0,176	0,294	0,529	0,556	0,333	1	20	0	195
	160	14	3	4	7	0,214	0,286	0,500	0,571	0,429	0	8	0	
	0	66	7	22	38	0,106	0,333	0,576	0,579	0,184	21	49	13	
cru003	62	54	7	18	30	0,130	0,333	0,556	0,600	0,233	17	44	7	195
	135	44	6	14	25	0,136	0,318	0,568	0,560	0,240	13	37	5	
	0	49	8	-	26	0,163	-	0,531	-	0,308	13	43	13	
2006	58	42	7	12	23	0,167	0,286	0,548	0,522	0,304	12	41	13	105
cru006	105	37	7	11	19	0,189	0,297	0,514	0,579	0,368	10	38	13	195
	149	30	6	10	17	0,200	0,333	0,567	0,588	0,353	-	-	-	
	0	83	10	28	46	0,120	0,337	0,554	0,609	0,217	13	46	12	
cru008	67	69	9	23	38	0,130	0,333	0,551	0,605	0,237	13	44	12	193
	131	58	8	19	32	0,138	0,328	0,552	0,594	0,250	10	42	11	
	0	54	8	-	31	0,148	-	0,574	-	0,258	15	35	11	
cru009	75	44	7	12	24	0,159	0,273	0,545	0,500	0,292	11	34	10	195
	158	35	7	10	18	0,200	0,286	0,514	0,556	0,389	7	28	4	
	0	78	11	23	43	0,141	0,295	0,551	0,535	0,256	12	-	7	
cru010	80	63	10	19	34	0,159	0,302	0,540	0,559	0,294	10	37	9	195
	120	57	9	17	31	0,158	0,298	0,544	0,548	0,290	-	-	-	
	0	42	8	13	23	0,190	0,310	0,548	0,565	0,348	11	37	13	
cru011	77	34	7	10	17	0,206	0,294	0,500	0,588	0,412	5	32	12	195
	149	27	6	8	13	0,222	0,296	0,481	0,615	0,462	2	30	8	

No.	α	D	U	W	Η	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	68	8	-	38	0,118	-	0,559	-	0,211	c7	c39	-	
010	55	59	8	-	33	0,136	-	0,559	-	0,242	c7	c36	-	105
cru012	140	47	6	13	26	0,128	0,277	0,553	0,500	0,231	c7	32	6	195
	180	41	6	12	22	0,146	0,293	0,537	0,545	0,273	-	-	-	
	0	120	17	37	61	0,142	0,308	0,508	0,607	0,279	11	-	-	
cru013	90	99	15	32	51	0,152	0,323	0,515	0,627	0,294	10	35	1	193/195
	157	82	12	27	43	0,146	0,329	0,524	0,628	0,279	10	31	5	
	0	83	10	28	45	0,120	0,337	0,542	0,622	0,222	15	48	13	
cru014	75	68	9	24	38	0,132	0,353	0,559	0,632	0,237	13	44	12	193
	137	57	8	19	33	0,140	0,333	0,579	0,576	0,242	9	40	10	
	0	138	17	44	73	0,123	0,319	0,529	0,603	0,233	-	4	4	
	90	112	15	-	60	0,134	-	0,536	-	0,250	-	12	1	102
cru015	150	95	13	25	53	0,137	0,263	0,558	0,472	0,245	11	23	0	193
	180	88	12	23	49	0,136	0,261	0,557	0,469	0,245	-	-	-	
	0	70	10	19	39	0,143	0,271	0,557	0,487	0,256	13	35	10	
cru016	90	54	8	16	29	0,148	0,296	0,537	0,552	0,276	10	33	10	195
	158	45	8	14	23	0,178	0,311	0,511	0,609	0,348	10	33	9	
019	0	42	7	c12	22	0,167	0,286	0,524	0,545	0,318	8	33	9	105
cru018	60	35	6	11	18	0,171	0,314	0,514	0,611	0,333	7	33	6	195
	0	49	8	-	27	0,163	-	0,551	-	0,296	6	33	6	
cru019	62	40	7	-	21	0,175	-	0,525	-	0,333	6	32	8	195
	128	34	7	10	18	0,206	0,294	0,529	0,556	0,389	7	32	9	
	0	27	4	-	14	0,148	-	0,519	-	0,286	3	21	0	
cru020	75	21	3	7	11	0,143	0,333	0,524	0,636	0,273	1	23	0	195
	120	19	3	6	10	0,158	0,316	0,526	0,600	0,300	0	21	0	
	0	33	6	c9	18	0,182	0,273	0,545	0,500	0,333	7	31	4	
cru021	61	28	5	c7	14	0,179	0,212	0,500	0,500	0,357	6	28	3	195
	120	24	5	6	12	0,208	0,250	0,500	0,500	0,417	6	27	0	
	0	38	6	12	20	0,158	0,316	0,526	0,600	0,300	8	31	10	
cru022	71	32	6	10	16	0,188	0,313	0,500	0,625	0,375	9	32	9	195
	153	26	5	8	13	0,192	0,308	0,500	0,615	0,385	8	30	5	
	0	42	9	-	20	0,214	-	0,476	-	0,450	6	27	11	
cru023	70	36	8	-	18	0,222	-	0,500	-	0,444	5	26	8	193
	100	33	7	-	16	0,212	-	0,485	-	0,438	-	-	5	
	0	86	10	28	46	0,116	0,326	0,535	0,609	0,217	16	22	9	
cru024	78	72	9	24	40	0,125	0,333	0,556	0,600	0,225	9	-	-	193
	158	56	8	19	31	0,143	0,339	0,554	0,613	0,258	4	-	-	
	0	72	10	-	38	0,139	-	0,528	-	0,263	20	37	7	
001	67	61	9	-	33	0,148	-	0,541	-	0,273	19	43	43 10 102	102
cru026a	138	50	8	13	27	0,160	0,260	0,540	0,481	0,296	14	38	12	193
	180	45	8	12	24	0,178	0,267	0,533	0,500	0,333	-	-	-	

No.	α	D	U	W	Η	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	55	7	-	30	0,127	-	0,545	-	0,233	12	40	6	
cru026b	60	46	7	-	24	0,152	-	0,522	-	0,292	6	30	6	193
	129	37	6	9	20	0,162	0,243	0,541	0,450	0,300	7	28	5	
	0	180	22	55	98	0,122	0,306	0,544	0,561	0,224	0	0	0	
027	85	153	18	c38	81	0,118	0,248	0,529	0,469	0,222	0	7	0	102
cru027	140	135	17	-	73	0,126	-	0,541	-	0,233	0	19	0	193
	197	127	17	34	64	0,134	0,268	0,504	0,531	0,266	-	-	-	
	0	116	14	37	61	0,121	0,319	0,526	0,607	0,230	9	27	11	
cru030	90	96	11	31	52	0,115	0,323	0,542	0,596	0,212	11	32	12	193 ?
	152	81	10	26	45	0,123	0,321	0,556	0,578	0,222	12	34	11	
	0	135	13	-	73	0,096	-	0,541	-	0,178	11	29	6	
021	76	111	13	-	62	0,117	-	0,559	-	0,210	12	43	3	102
cru031	134	95	11	30	54	0,116	0,3157895	0,568	0,556	0,204	9	39	2	193
	175	89	10	27	50	0,112	0,3033708	0,562	0,540	0,200	-	-	-	
	0	168	19	-	89	0,113	-	0,530	-	0,213	0	5	8	
025	90	138	16	-	76	0,116	-	0,551	-	0,211	2	30	1	102
cru035a	150	118	13	-	68	0,110	-	0,576	-	0,191	6	47	0	193
	180	105	13	35	62	0,124	0,333	0,590	0,565	0,210	-	-	-	
	0	22	6	-	10	0,273	-	0,455	-	0,600	2	22	0	
cru035b	55	19	5	-	9	0,263	-	0,474	-	0,556	1	15	0	193
	120	16	5	-	7	0,313	-	0,438	-	0,714	0	5	0	
	0	51	7	-	29	0,137	-	0,569	-	0,241	11	31	10	
cru036	70	42	6	-	23	0,143	-	0,548	-	0,261	13	32	10	193/195
	157	33	6	10	18	0,182	0,303	0,545	0,556	0,333	7	28	6	
	0	23	5	6	11	0,217	0,261	0,478	0,545	0,455	8	29	0	
027	55	20	5	5	9	0,250	0,250	0,450	0,556	0,556	3	22	0	102/105
cru037a	110	17	4	5	8	0,235	0,294	0,471	0,625	0,500	1	12	0	193/195
	210	14	4	4	6	0,286	0,286	0,429	0,667	0,667	0	0	0	
	0	34	8	-	15	0,235	-	0,441	-	0,533	4	24	12	
cru038	50	31	8	-	13	0,258	-	0,419	-	0,615	4	25	10	193/195
	98	28	7	8	12	0,250	0,286	0,429	0,667	0,583	-	-	-	
	0	74	9	21	41	0,122	0,284	0,554	0,512	0,220	13	31	5	
cru039	74	60	8	18	33	0,133	0,300	0,550	0,545	0,242	12	28	7	193/195
	127	51	7	16	28	0,137	0,314	0,549	0,571	0,250	12	26	7	
	0	113	14	-	61	0,124	-	0,540	-	0,230	16	46	2	
	80	94	13	28	53	0,138	0,298	0,564	0,528	0,245	14	45	4	100/107
cru040	160	75	11	24	42	0,147	0,320	0,560	0,571	0,262	12	41	9	193/195
	190	69	11	21	38	0,159	0,304	0,551	0,553	0,289	-	-	-	
	0	92	11	29	51	0,120	0,315	0,554	0,569	0,216	8	21	8	
cru041	45	82	10	24	45	0,122	0,293	0,549	0,533	0,222	10	31	6	193/195
cru041	<i>99</i>	71	9	22	39	0,127	0,310	0,549	0,564	0,231	9	36	9	

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	75	10	-	41	0,133	-	0,547	-	0,244	10	48	9	
0.42	57	64	8	c18	35	0,125	0,281	0,547	0,514	0,229	9	45	9	102/105
cru042	120	54	7	17	29	0,130	0,315	0,537	0,586	0,241	7	39	9	193/195
	180	c44	7	c12	24	0,159	0,273	0,545	0,500	0,292	-	-	-	
	0	64	9	-	35	0,141	-	0,547	-	0,257	8	36	11	
0.42	55	57	8	-	32	0,140	-	0,561	-	0,250	5	31	10	102/105
cru043	105	49	8	15	27	0,163	0,306	0,551	0,556	0,296	4	26	8	193/195
	155	43	7	c12	22	0,163	0,279	0,512	0,545	0,318	-	-	-	
	0	79	8	-	45	0,101	-	0,570	-	0,178	12	46	10	
	74	65	7	-	36	0,108	-	0,554	-	0,194	12	44	14	
cru044	153	52	7	14	29	0,135	0,269	0,558	0,483	0,241	15	41	13	193/195
	180	49	6	14	26	0,122	0,286	0,531	0,538	0,231	-	-	-	
	0	108	16	34	57	0,148	0,315	0,528	0,596	0,281	10	30	11	
	80	89	14	29	47	0,157	0,326	0,528	0,617	0,298	11	33	12	
cru045	140	76	12	24	40	0,158	0,316	0,526	0,600	0,300	12	30	12	193/195
	180	c65	12	22	34	0,185	0,338	0,523	0,647	0,353	-	-	-	
	0	53	8	-	27	0,151	-	0,509	-	0,296	12	33	12	
cru046	80	42	7	-	22	0,167	-	0,524	-	0,318	13	33	10	193/195
	0	140	20	42	74	0,143	0,300	0,529	0,568	0,270	8	16	0	
cru047	105	107	16	31	58	0,150	0,290	0,542	0,534	0,276	5	35	0	193/195
160 92 14 28 46 0,152 0,304 0,500 0,304	5	33	0											
	0	63	8	-	35	0,127	-	0,556	-	0,229	14	40	13	
cru048	80	49	8	-	26	0,163	-	0,531	-	0,308	11	36	11	193/195
	154	40	7	-	21	0,175	-	0,525	-	0,333	8	32	7	
	0	43	9	13	22	0,209	0,302	0,512	0,591	0,409	10	31	13	
cru049	75	36	8	11	18	0,222	0,306	0,500	0,611	0,444	9	26	13	193/195
	120	32	7	9	15	0,219	0,281	0,469	0,600	0,467	7	26	10	
	0	62	7	18	35	0,113	0,290	0,565	0,514	0,200	9	43	9	
	60	52	7	16	29	0,135	0,308	0,558	0,552	0,241	8	36	7	
cru050	129	42	6	13	24	0,143	0,310	0,571	0,542	0,250	6	31	6	193/195
	145	40	6	12	23	0,150	0,300	0,575	0,522	0,261	6	30	4	
	0	93	13	-	47	0,140	-	0,505	-	0,277	13	35	11	
cru051	65	80	12	-	42	0,150	-	0,525	-	0,286	10	36	9	193/195
	140	66	11	-	35	0,167	-	0,530	-	0,314	10	34	10	
	0	63	9	-	35	0,143	-	0,556	-	0,257	11	34	9	
	70	52	9	14	28	0,173	0,269	0,538	0,500	0,321	7	28	12	
cru052	116	46	9	13	24	0,196	0,283	0,522	0,542	0,375	7	27	12	193/195
	148	42	8	12	21	0,190	0,286	0,500	0,571	0,381	7	28	13	
	0	57	10	-	30	0,175	-	0,526	-	0,333	15	40	14	
cru053a	50	51	9	-	28	0,176	-	0,549	-	0,321	14	37	11	193/195
	<i>93</i>	44	8	-	24	0,182	-	0,545	-	0,333	12	34	8	

No.	α	D	U	W	Η	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	38	9	13	19	0,237	0,342	0,500	0,684	0,474	8	33	11	
cru053b	65	32	6	10	16	0,188	0,313	0,500	0,625	0,375	7	31	10	193/195
	133	25	5	9	13	0,200	0,360	0,520	0,692	0,385	4	27	6	
	0	20	4	-	9	0,200	-	0,450	-	0,444	6	23	0	
cru053c	58	17	4	c6	8	0,235	0,353	0,471	0,750	0,500	3	14	0	193/195
	131	14	3	5	7	0,214	0,357	0,500	0,714	0,429	0	4	0	
cru053d	0	25	5	-	12	0,200	-	0,480	-	0,417	4	23	1	193/195
	0	44	8	-	23	0,182	-	0,523	-	0,348	14	32	13	
cru054	29	41	7	-	21	0,171	-	0,512	-	0,333	14	32	11	193
	79	36	6	-	19	0,167	-	0,528	-	0,316	14	31	13	
	0	60	9	-	33	0,150	-	0,550	-	0,273	14	32	12	
cru055	23	57	8	-	31	0,140	-	0,544	-	0,258	16	33	12	193/195
	92	46	7	12	25	0,152	0,261	0,543	0,480	0,280	14	33	12	
	0	107	15	32	56	0,140	0,299	0,523	0,571	0,268	9	39	9	
056	52	95	13	29	50	0,137	0,305	0,526	0,580	0,260	9	42	9	102/105
cru056a	101	81	12	23	43	0,148	0,284	0,531	0,535	0,279	9	47	10	193/195
	167	c69	11	21	39	0,159	0,304	0,565	0,538	0,282	-	-	-	
	0	66	9	-	36	0,136	-	0,545	-	0,250	9	37	12	
cru057a	38	58	9	-	32	0,155	-	0,552	-	0,281	10	37	12	195
	115	47	7	-	26	0,149	-	0,553	-	0,269	10	36	-	
	0	65	10	-	35	0,154	-	0,538	-	0,286	c7	41	c6	
cru057b	65	56	9	-	30	0,161	-	0,536	-	0,300	-	36	c5	195
	130	46	8	-	24	0,174	-	0,522	-	0,333	-	c30	c4	
	0	154	22	-	78	0,143	-	0,506	-	0,282	12	19	12	
076-	85	131	20	-	68	0,153	-	0,519	-	0,294	9	26	11	102
cru076a	152	112	17	35	58	0,152	0,313	0,518	0,603	0,293	8	30	15	193
	180	106	17	32	54	0,160	0,302	0,509	0,593	0,315	-	-	-	
	0	184	24	47	92	0,130	0,255	0,500	0,511	0,261	0	7	0	
om)077o	50	165	22	43	84	0,133	0,261	0,509	0,512	0,262	0	0	0	102
cru077a	110	139	19	36	75	0,137	0,259	0,540	0,480	0,253	0	0	0	195
	205	c120	16	c30	62	0,133	0,250	0,517	0,484	0,258	-	-	-	
	0	53	6	-	29	0,113	-	0,547	-	0,207	8	33	10	
cru077b	50	48	5	-	27	0,104	-	0,563	-	0,185	-	32	10	193
	105	43	4	-	24	0,093	-	0,558	-	0,167	-	30	8	
	0	116	15	35	61	0,129	0,302	0,526	0,574	0,246	13	24	2	
078	56	107	13	-	59	0,121	-	0,551	-	0,220	17	41	5	105
cru078	149	83	11	-	44	0,133	-	0,530	-	0,250	14	50	10	195
	180	77	10	-	39	0,130	-	0,506	-	0,256	-	-	-	
	0	159	18	-	84	0,113	-	0,528	-	0,214	0	-	0	
070	90	131	17	-	67	0,130	-	0,511	-	0,254	3	-	0	102/105
cru0/9	170	109	12	32	59	0,110	0,294	0,541	0,542	0,203	7	13	0	193/193
	205	100	11	29	54	0,110	0,290	0,540	0,537	0,204	-	-	-	

No.	α	D	U	W	Η	U/D	W/D	H/D	W/H	U/H	Npr/2	Nsr/2	Nt/2	Bed n°
	0	121	15	-	62	0,124	-	0,512	-	0,242	6	0	3	
080	91	95	13	-	52	0,137	-	0,547	-	0,250	9	13	7	105
cru080	157	83	11	-	45	0,133	-	0,542	-	0,244	13	27	9	195
	180	78	11	-	42	0,141	-	0,538	-	0,262	-	-	-	
	0	40	7	-	21	0,175	-	0,525	-	0,333	9	29	10	
cru082	42	35	6	-	19	0,171	-	0,543	-	0,316	7	25	8	195
	158	26	5	-	13	0,192	-	0,500	-	0,385	4	22	2	
	0	96	10	31	53	0,104	0,323	0,552	0,585	0,189	20	48	10	
cru083	95	74	9	23	43	0,122	0,311	0,581	0,535	0,209	22	53	12	193
	155	62	8	19	35	0,129	0,306	0,565	0,543	0,229	19	48	12	
	0	34	8	10	17	0,235	0,294	0,500	0,588	0,471	6	20	7	
cru084	70	28	7	9	13	0,250	0,321	0,464	0,692	0,538	5	22	3	195
	150	23	6	-	10	0,261	-	0,435	-	0,600	1	23	0	
	0	37	8	-	19	0,216	-	0,514	-	0,421	6	29	13	
cru085	70	30	7	9	15	0,233	0,300	0,500	0,600	0,467	4	28	12	193
	140	25	7	8	12	0,280	0,320	0,480	0,667	0,583	1	28	7	
	0	28	5	9	15	0,179	0,321	0,536	0,600	0,333	6	27	2	
096	70	24	5	8	12	0,208	0,333	0,500	0,667	0,417	2	19	0	102
cru080	143	19	4	7	9	0,211	0,368	0,474	0,778	0,444	0	13	0	195
	180	16	4	6	8	0,250	0,375	0,500	0,750	0,500	0	5	0	
	0	187	22	52	97	0,118	0,278	0,519	0,536	0,227	8	0	0	
099-	95	156	19	43	84	0,122	0,276	0,538	0,512	0,226	9	14	0	102
cruossa	170	129	17	34	72	0,132	0,264	0,558	0,472	0,236	12	34	0	195
	195	124	16	34	69	0,129	0,274	0,556	0,493	0,232	-	-	-	

Table 2: measurements of Taramelliceras compsum (OPPEL, 1863) [m].

No.	α	D	U	W	Н	$U\!/D$	W/D	H/D	W/H	U/H	Bed n°
	0	c34	11	-	13	0,324	-	0,382	-	0,846	
crl010b	90	27	8	-	11	0,296	-	0,407	-	0,727	193
	140	24	7	-	10	0,292	-	0,417	-	0,700	
	0	23	7	-	10	0,304	-	0,435	-	0,700	
crl012b	90	18	5	4	8	0,278	0,222	0,444	0,500	0,625	193
	128	16	4	4	7	0,250	0,250	0,438	0,571	0,571	
	0	29	9	-	11	0,310	-	0,379	-	0,818	
10221-	90	24	7	-	10	0,292	-	0,417	-	0,700	102
cr1023b	135	21	6	-	9	0,286	-	0,429	-	0,667	193
	180	19	5	-	8	0,263	-	0,421	-	0,625	• • • •

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Bed n°
	0	35	11	-	14	0,314	-	0,400	-	0,786	
10521	90	29	8	-	12	0,276	-	0,414	-	0,667	102
cr1053b	132	27	7	-	11	0,259	-	0,407	-	0,636	193
	190	23	6	-	10	0,261	-	0,435	-	0,600	
	0	31	11	7	12	0,355	0,226	0,387	0,583	0,917	
1000	70	28	9	-	12	0,321	-	0,429	-	0,750	102
cr1080	160	22	7	-	9	0,318	-	0,409	-	0,778	193
	180	20	6	-	8	0,300	-	0,400	-	0,750	
	0	32	10	7	12	0,313	0,219	0,375	0,583	0,833	
100.01	51	28	8	6	11	0,286	0,214	0,393	0,545	0,727	102
crl082b	100	25	6	6	11	0,240	0,240	0,440	0,545	0,545	193
	160	21	6	5	9	0,286	0,238	0,429	0,556	0,667	
	0	20	6	6	8	0,300	0,300	0,400	0,750	0,750	
cr1090a	80	18	5	-	8	0,278	-	0,444	-	0,625	193
	160	15	3	-	7	0,200	-	0,467	-	0,429	
	0	33	11	8	12	0,333	0,242	0,364	0,667	0,917	
	72	29	10	7	11	0,345	0,241	0,379	0,636	0,909	
cr1092	125	25	8	6	10	0,320	0,240	0,400	0,600	0,800	193
	188	22	6	5	9	0,273	0,227	0,409	0,556	0,667	
	0	28	10	7	11	0,357	0,250	0,393	0,636	0,909	
1000	76	24	7	6	10	0,292	0,250	0,417	0,600	0,700	100
cr1093	137	21	6	5	9	0,286	0,238	0,429	0,556	0,667	193
	205	17	5	4	7	0,294	0,235	0,412	0,571	0,714	
	0	29	8	7	12	0,276	0,241	0,414	0,583	0,667	
100.4	71	25	7	6	11	0,280	0,240	0,440	0,545	0,636	100
cr1094	125	22	6	6	10	0,273	0,273	0,455	0,600	0,600	193
	153	20	5	5	9	0,250	0,250	0,450	0,556	0,556	
	0	35	10	8	14	0,286	0,229	0,400	0,571	0,714	
1005	60	30	9	7	13	0,300	0,233	0,433	0,538	0,692	100
crl095	110	26	7	6	12	0,269	0,231	0,462	0,500	0,583	193
	180	22	6	5	10	0,273	0,227	0,455	0,500	0,600	
	0	33	11	8	13	0,333	0,242	0,394	0,615	0,846	
	56	30	9	7	12	0,300	0,233	0,400	0,583	0,750	
crl096	110	27	8	7	11	0,296	0,259	0,407	0,636	0,727	193
	180	22	7	6	10	0,318	0,273	0,455	0,600	0,700	
	0	31	9	8	12	0,290	0,258	0,387	0,667	0,750	
10.0-	52	27	8	7	11	0,296	0,259	0,407	0,636	0,727	
cr1097	97	24	6	6	10	0,250	0,250	0,417	0,600	0,600	193
	165	20	6	5	9	0,300	0,250	0,450	0,556	0,667	

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Bed n°
	0	28	9	6	11	0,321	0,214	0,393	0,545	0,818	
1000	70	23	7	5	10	0,304	0,217	0,435	0,500	0,700	102
cr1098	130	20	6	-	9	0,300	-	0,450	-	0,667	193
	195	17	5	4	8	0,294	0,235	0,471	0,500	0,625	
	0	34	11	-	13	0,324	-	0,382	-	0,846	
crl101e	90	25	6	6	11	0,240	0,240	0,440	0,545	0,545	193
	138	23	6	-	11	0,261	-	0,478	-	0,545	
	0	34	11	-	13	0,324	-	0,382	-	0,846	
11016	9	29	9	-	11	0,310	-	0,379	-	0,818	102
cr1101f	122	27	8	-	11	0,296	-	0,407	-	0,727	193
	260	19	4	4	8	0,211	0,211	0,421	0,500	0,500	
	0	16	4	4	7	0,250	0,250	0,438	0,571	0,571	
crl101g	90	14	3	-	6	0,214	-	0,429	-	0,500	193
	120	12	3	-	5	0,250	-	0,417	-	0,600	
11011	0	17	5	-	7	0,294	-	0,412	-	0,714	102
crl101h	90	13	3	-	6	0,231	-	0,462	-	0,500	193
1102	0	26	7	-	11	0,269	-	0,423	-	0,636	102
cr1102c	60	22	сб	-	10	0,273	-	0,455	-	0,600	193
	0	23	6	-	10	0,261	-	0,435	-	0,600	
1102	47	20	5	-	9	0,250	-	0,450	-	0,556	102
cr1103c	90	18	4	-	8	0,222	-	0,444	-	0,500	193
	128	16	4	-	7	0,250	-	0,438	-	0,571	
	0	25	8	-	9	0,320	-	0,360	-	0,889	
1102 -1	50	22	7	6	9	0,318	0,273	0,409	0,667	0,778	102
critusa	110	19	6	5	8	0,316	0,263	0,421	0,625	0,750	193
	180	17	5	4	7	0,294	0,235	0,412	0,571	0,714	
	0	33	10	8	14	0,303	0,242	0,424	0,571	0,714	
crl104a	90	27	8	7	12	0,296	0,259	0,444	0,583	0,667	193
	215	20	6	5	9	0,300	0,250	0,450	0,556	0,667	
	0	30	9	6	12	0,300	0,200	0,400	0,500	0,750	
110.4h	65	26	7	6	11	0,269	0,231	0,423	0,545	0,636	102
CI11040	150	21	5	5	9	0,238	0,238	0,429	0,556	0,556	195
	180	19	5	5	9	0,263	0,263	0,474	0,556	0,556	
	0	33	10	9	13	0,303	0,273	0,394	0,692	0,769	
crl119	55	29	9	7	12	0,310	0,241	0,414	0,583	0,750	193
	120	25	8	6	10	0,320	0,240	0,400	0,600	0,800	
	0	32	10	-	13	0,313	-	0,406	-	0,769	
arl120	61	28	9	7	11	0,321	0,250	0,393	0,636	0,818	102
cr1120	140	23	7	6	9	0,304	0,261	0,391	0,667	0,778	193
	180	20	6	5	8	0,300	0,250	0,400	0,625	0,750	

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Bed n°
	0	31	10	8	13	0,323	0,258	0,419	0,615	0,769	
crl121	70	26	8	7	11	0,308	0,269	0,423	0,636	0,727	193
	150	21	6	5	10	0,286	0,238	0,476	0,500	0,600	
	0	26	8	-	11	0,308	-	0,423	-	0,727	
crl122	80	22	6	6	9	0,273	0,273	0,409	0,667	0,667	193
	138	19	5	5	8	0,263	0,263	0,421	0,625	0,625	
	0	27	9	7	10	0,333	0,259	0,370	0,700	0,900	
crl123	61	23	7	6	10	0,304	0,261	0,435	0,600	0,700	193
	140	19	6	5	8	0,316	0,263	0,421	0,625	0,750	
	0	32	10	8	12	0,313	0,250	0,375	0,667	0,833	
1124	64	28	8	7	12	0,286	0,250	0,429	0,583	0,667	102
cr1124	140	23	6	6	10	0,261	0,261	0,435	0,600	0,600	193
	190	21	5	5	9	0,238	0,238	0,429	0,556	0,556	
	0	25	7	6	11	0,280	0,240	0,440	0,545	0,636	
crl130	83	21	6	5	9	0,286	0,238	0,429	0,556	0,667	193
	170	16	4	4	7	0,250	0,250	0,438	0,571	0,571	
	0	21	6	-	9	0,286	-	0,429	-	0,667	
crl140c	70	18	5	-	8	0,278	-	0,444	-	0,625	193
	130	15	4	-	7	0,267	-	0,467	-	0,571	
11.41	0	19	6	-	8	0,316	-	0,421	-	0,750	100
crl141c	120	15	4	-	5	0,267	-	0,333	-	0,800	193
11.10	0	16	5	4	7	0,313	0,250	0,438	0,571	0,714	100
cr1142	70	13	4	4	6	0,308	0,308	0,462	0,667	0,667	193
	0	29	9	-	11	0,310	-	0,379	-	0,818	
cru002b	70	24	8	-	11	0,333	-	0,458	-	0,727	195
	167	19	6	-	9	0,316	-	0,474	-	0,667	
	0	33	10	с7	14	0,303	0,212	0,424	0,500	0,714	
cru007	90	27	8	6	11	0,296	0,222	0,407	0,545	0,727	195
	192	21	5	5	9	0,238	0,238	0,429	0,556	0,556	
	0	35	12	8	13	0,343	0,229	0,371	0,615	0,923	
cru037b	90	29	9	7	12	0,310	0,241	0,414	0,583	0,750	193/195
	180	24	7	5	10	0,292	0,208	0,417	0,500	0,700	
05 <i>6</i> 1	0	15	4	-	6	0,267	-	0,400	-	0,667	102/105
cru030b	120	11	3	c3	5	0,273	0,273	0,455	0,600	0,600	193/193
	0	34	11	7	13	0,324	0,206	0,382	0,538	0,846	
050	90	28	9	7	12	0,321	0,250	0,429	0,583	0,750	102/105
cru058	151	24	7	5	10	0,292	0,208	0,417	0,500	0,700	193/195
	199	21	6	-	9	0,286	-	0,429	-	0,667	
	0	34	11	-	13	0,324	-	0,382	-	0,846	
0.50	90	28	8	6	12	0,286	0,214	0,429	0,500	0,667	102/105
cru059	138	25	7	-	11	0,280	-	0,440	-	0,636	193/195
	201	20	5	-	10	0,250	-	0,500	-	0,500	

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Bed n°
	0	37	12	8	15	0,324	0,216	0,405	0,533	0,800	
0.000	90	31	9	7	13	0,290	0,226	0,419	0,538	0,692	102/105
cru060	160	26	7	7	11	0,269	0,269	0,423	0,636	0,636	193/193
	210	22	6	6	10	0,273	0,273	0,455	0,600	0,600	
	0	17	5	-	6	0,294	-	0,353	-	0,833	
cru061	40	16	5	4	6	0,313	0,250	0,375	0,667	0,833	195
	135	12	4	3	5	0,333	0,250	0,417	0,600	0,800	

Table 3: measurements of *Streblites weinlandi* (OPPEL, 1863) [M].

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Bed n°
	0	59	3	-	37	0,051	-	0,627	-	0,081	
an1026h	20	55	3	-	33	0,055	-	0,600	-	0,091	102
criusod	90	44	2	-	27	0,045	-	0,614	-	0,074	195
	131	39	2	-	23	0,051	-	0,590	-	0,087	
	0	53	3	-	32	0,057	-	0,604	-	0,094	
crl052b	90	42	2	-	25	0,048	-	0,595	-	0,080	193
	139	36	2	-	21	0,056	-	0,583	-	0,095	
	0	70	5	14	39	0,071	0,200	0,557	0,359	0,128	
1055	90	57	4	13	34	0,070	0,228	0,596	0,382	0,118	102
cr1055	146	49	4	12	29	0,082	0,245	0,592	0,414	0,138	193
	233	c39	3	11	23	0,077	0,282	0,590	0,478	0,130	
	0	75	4	14	45	0,053	0,187	0,600	0,311	0,089	
1056	60	65	4	13	40	0,062	0,200	0,615	0,325	0,100	102
cr1056	124	53	3	11	32	0,057	0,208	0,604	0,344	0,094	193
	164	c48	3	10	29	0,063	0,208	0,604	0,345	0,103	
	0	69	4	12	42	0,058	0,174	0,609	0,286	0,095	
cr1060	101	51	4	11	31	0,078	0,216	0,608	0,355	0,129	193
	133	46	3	10	28	0,065	0,217	0,609	0,357	0,107	
	0	60	4	11	35	0,067	0,183	0,583	0,314	0,114	
crl061	58	51	4	10	29	0,078	0,196	0,569	0,345	0,138	193
	120	43	3	9	25	0,070	0,209	0,581	0,360	0,120	
	0	46	3	-	28	0,065	-	0,609	-	0,107	
cr1062	60	37	3	8	23	0,081	0,216	0,622	0,348	0,130	193
	129	31	2	7	18	0,065	0,226	0,581	0,389	0,111	
	0	51	4	11	31	0,078	0,216	0,608	0,355	0,129	
cr1063	60	42	3	9	25	0,071	0,214	0,595	0,360	0,120	193
	131	34	3	8	21	0,088	0,235	0,618	0,381	0,143	

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Bed n°
	0	62	4	c12	37	0,065	0,194	0,597	0,324	0,108	
cr1064	71	51	4	11	30	0,078	0,216	0,588	0,367	0,133	193
	111	45	3	10	26	0,067	0,222	0,578	0,385	0,115	
	0	55	4	13	33	0,073	0,236	0,600	0,394	0,121	
cr1065	70	46	4	10	26	0,087	0,217	0,565	0,385	0,154	193
	142	37	3	9	21	0,081	0,243	0,568	0,429	0,143	
	0	63	4	-	37	0,063	-	0,587	-	0,108	
crl066c	76	50	4	-	30	0,080	-	0,600	-	0,133	193
	150	41	3	-	24	0,073	-	0,585	-	0,125	
	0	85	5	-	51	0,059	-	0,600	-	0,098	
crl066d	79	68	4	-	40	0,059	-	0,588	-	0,100	193
	167	52	4	-	31	0,077	-	0,596	-	0,129	
	0	59	4	-	36	0,068	-	0,610	-	0,111	
cr1067	72	46	3	-	28	0,065	-	0,609	-	0,107	193/195
	138	38	3	-	23	0,079	-	0,605	-	0,130	
	0	72	5	-	42	0,069	-	0,583	-	0,119	
10.50	60	63	4	-	38	0,063	-	0,603	-	0,105	100
crl068	123	51	4	-	31	0,078	-	0,608	-	0,129	193
	149	46	3	-	28	0,065	-	0,609	-	0,107	
	0	69	5	11	40	0,072	0,159	0,580	0,275	0,125	
crl069b	64	58	4	-	34	0,069	-	0,586	-	0,118	193
	135	47	4	-	27	0,085	-	0,574	-	0,148	
	0	70	5	c12	41	0,071	0,171	0,586	0,293	0,122	
cr1071	80	54	4	10	32	0,074	0,185	0,593	0,313	0,125	193
	150	45	4	9	26	0,089	0,200	0,578	0,346	0,154	
	0	53	4	10	32	0,075	0,189	0,604	0,313	0,125	
1070	17	50	4	10	30	0,080	0,200	0,600	0,333	0,133	100
cr1072	90	40	3	9	24	0,075	0,225	0,600	0,375	0,125	193
	161	33	3	8	19	0,091	0,242	0,576	0,421	0,158	
	0	50	4	11	30	0,080	0,220	0,600	0,367	0,133	
cr1073	56	42	3	10	25	0,071	0,238	0,595	0,400	0,120	193
	140	33	3	8	19	0,091	0,242	0,576	0,421	0,158	
	0	46	4	-	27	0,087	-	0,587	-	0,148	
cr1074	60	38	3	-	22	0,079	-	0,579	-	0,136	193
	118	31	3	-	18	0,097	-	0,581	-	0,167	
	0	81	4	-	45	0,049	-	0,556	-	0,089	
1076	85	69	3	-	41	0,043	-	0,594	-	0,073	102
crl076a	155	56	3	-	34	0,054	-	0,607	-	0,088	193
	239	c42	2	-	25	0,048	-	0,595	-	0,080	
	0	69	4	-	41	0,058	-	0,594	-	0,098	
crl077b	96	51	4	-	31	0,078	-	0,608	-	0,129	193
	140	45	3	-	28	0,067	-	0,622	-	0,107	

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Bed n°
	0	38	3	-	22	0,079	-	0,579	-	0,136	
crl079a	72	31	3	-	18	0,097	-	0,581	-	0,167	193
	147	25	2	-	15	0,080	-	0,600	-	0,133	
	0	c41	3	9	c24	0,073	0,220	0,585	0,375	0,125	
crl079b	63	35	3	-	20	0,086	-	0,571	-	0,150	193
	119	28	2	-	17	0,071	-	0,607	-	0,118	
	0	59	4	11	35	0,068	0,186	0,593	0,314	0,114	
cr1081	60	50	4	9	29	0,080	0,180	0,580	0,310	0,138	193
	132	41	3	8	24	0,073	0,195	0,585	0,333	0,125	
	0	38	3	8	23	0,079	0,211	0,605	0,348	0,130	
ord001	20	36	3	8	21	0,083	0,222	0,583	0,381	0,143	102
CH091	80	29	2	7	17	0,069	0,241	0,586	0,412	0,118	195
	135	25	2	6	15	0,080	0,240	0,600	0,400	0,133	
	0	45	4	-	27	0,089	-	0,600	-	0,148	
crl117b	60	38	3	-	22	0,079	-	0,579	-	0,136	193
	120	31	3	-	19	0,097	-	0,613	-	0,158	
	0	51	4	-	30	0,078	-	0,588	-	0,133	
crl125	48	44	3	-	26	0,068	-	0,591	-	0,115	193
	102	38	3	-	23	0,079	-	0,605	-	0,130	
	0	114	7	c21	61	0,061	0,184	0,535	0,344	0,115	
cr1126	68	97	6	18	53	0,062	0,186	0,546	0,340	0,113	103
c11120	127	86	5	15	49	0,058	0,174	0,570	0,306	0,102	175
	205	71	4	12	41	0,056	0,169	0,577	0,293	0,098	
	0	39	3	8	23	0,077	0,205	0,590	0,348	0,130	
crl127	67	32	3	7	19	0,094	0,219	0,594	0,368	0,158	103
ciii27	140	25	3	6	15	0,120	0,240	0,600	0,400	0,200	175
	210	19	2	5	11	0,105	0,263	0,579	0,455	0,182	
	0	34	3	7	19	0,088	0,206	0,559	0,368	0,158	
crl128	68	28	3	6	15	0,107	0,214	0,536	0,400	0,200	193
	135	23	-	6	13	-	0,261	0,565	0,462	-	
	0	33	3	6	19	0,091	0,182	0,576	0,316	0,158	
crl129	68	28	3	6	16	0,107	0,214	0,571	0,375	0,188	193
	140	22	2	5	13	0,091	0,227	0,591	0,385	0,154	
	0	56	4	12	34	0,071	0,214	0,607	0,353	0,118	
crl138	67	45	4	10	27	0,089	0,222	0,600	0,370	0,148	193
	200	31	3	7	17	0,097	0,226	0,548	0,412	0,176	
	0	27	c2	6	16	0,074	0,222	0,593	0,375	0,125	
crl139	49	23	c2	5	14	0,087	0,217	0,609	0,357	0,143	193
	111	20	-	5	11	-	0,250	0,550	0,455	-	
	0	50	4	-	30	0,080	-	0,600	-	0,133	
crl141a	90	39	3	9	23	0,077	0,231	0,590	0,391	0,130	193
	180	30	2	7	18	0,067	0,233	0,600	0,389	0,111	

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Bed n°
	0	81	5	-	46	0,062	-	0,568	-	0,109	
amı017a	90	68	4	c9	40	0,059	0,132	0,588	0,225	0,100	102
ciu017a	165	55	4	8	33	0,073	0,145	0,600	0,242	0,121	195
	207	49	3	8	29	0,061	0,163	0,592	0,276	0,103	
	0	37	3	8	23	0,081	0,216	0,622	0,348	0,130	
cru017b	62	31	3	7	18	0,097	0,226	0,581	0,389	0,167	193
	140	25	2	6	14	0,080	0,240	0,560	0,429	0,143	
	0	20	2	-	11	0,100	-	0,550	-	0,182	
cru057c	50	18	2	-	10	0,111	-	0,556	-	0,200	195
	95	15	1	-	9	0,067	-	0,600	-	0,111	
	0	112	7	-	60	0,063	-	0,536	-	0,117	
0.40	93	89	5	c14	51	0,056	0,157	0,573	0,275	0,098	100/107
cru062	170	77	4	c11	46	0,052	0,143	0,597	0,239	0,087	193/195
	217	c67	4	-	40	0,060	-	0,597	-	0,100	
	0	102	8	21	54	0,078	0,206	0,529	0,389	0,148	
	90	84	6	-	47	0,071	-	0,560	-	0,128	
cru063	169	70	4	-	41	0,057	-	0,586	-	0,098	193/195
	190	67	4	-	39	0,060	-	0,582	-	0,103	
	0	59	4	-	36	0,068	-	0,610	-	0,111	
cru064	77	47	3	10	28	0,064	0,213	0,596	0,357	0,107	193/195
	120	c40	3	8	25	0,075	0,200	0,625	0,320	0,120	
	0	80	6	-	44	0,075	-	0,550	-	0,136	
	69	67	4	-	39	0,060	-	0,582	-	0,103	
cru065	143	57	4	-	34	0,070	-	0,596	-	0,118	193/195
	209	c46	-	-	28	-	-	0,609	-	-	
	0	90	7	c13	49	0,078	0,144	0,544	0,265	0,143	
	80	74	6	-	42	0,081	-	0,568	-	0,143	
cru066	163	61	5	-	37	0,082	-	0,607	-	0,135	193/195
	198	c54	5	-	32	0,093	-	0,593	-	0,156	
	0	44	2	-	26	0,045	-	0,591	-	0,077	
cru076b	80	35	2	-	20	0,057	-	0,571	-	0,100	193
	150	28	1	-	17	0,036	-	0,607	-	0,059	
	0	44	3	-	26	0,068	-	0,591	-	0,115	
cru077c	60	37	3	-	21	0,081	-	0,568	-	0,143	193
	130	30	2	-	17	0,067	-	0,567	-	0,118	
	0	87	5	-	49	0,057	-	0,563	-	0,102	
cru081	80	72	4	-	43	0,056	-	0,597	-	0,093	193
	158	57	4	-	34	0,070	-	0,596	-	0,118	

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Bed n°
crl090b	0	22	3	6	10	0,136	0,273	0,455	0,600	0,300	102
	60	20	3	5	10	0,150	0,250	0,500	0,500	0,300	
	120	18	2	-	10	0,111	-	0,556	-	0,200	193
	200	15	2	-	8	0,133	-	0,533	-	0,250	
cr1099	0	29	5	6	13	0,172	0,207	0,448	0,462	0,385	193
	68	23	4	6	11	0,174	0,261	0,478	0,545	0,364	
	130	22	4	5	12	0,182	0,227	0,545	0,417	0,333	
	160	20	-	5	12	-	0,250	0,600	0,417	-	
	200	18	-	4	10	-	0,222	0,556	0,400	-	
cr1100	0	25	4	6	12	0,160	0,240	0,480	0,500	0,333	193
	80	22	3	5	12	0,136	0,227	0,545	0,417	0,250	
	120	20	2	4	11	0,100	0,200	0,550	0,364	0,182	
	140	19	2	4	10	0,105	0,211	0,526	0,400	0,200	
cr1131	0	22	3	5	10	0,136	0,227	0,455	0,500	0,300	193
	60	20	3	5	9	0,150	0,250	0,450	0,556	0,333	
	126	19	-	4	11	-	0,211	0,579	0,364	-	
	180	15	-	3	9	-	0,200	0,600	0,333	-	
cr1132	0	26	5	7	12	0,192	0,269	0,462	0,583	0,417	193
	54	23	4	5	11	0,174	0,217	0,478	0,455	0,364	
	114	21	3	5	12	0,143	0,238	0,571	0,417	0,250	
	160	17	2	4	10	0,118	0,235	0,588	0,400	0,200	
	0	24	5	6	11	0,208	0,250	0,458	0,545	0,455	193
1100	45	21	3	6	11	0,143	0,286	0,524	0,545	0,273	
er1133	100	20	3	5	11	0,150	0,250	0,550	0,455	0,273	
	132	19	-	4	11	-	0,211	0,579	0,364	-	
cr1134	0	26	4	6	13	0,154	0,231	0,500	0,462	0,308	100
	70	22	3	5	12	0,136	0,227	0,545	0,417	0,250	
	145	19	2	5	11	0,105	0,263	0,579	0,455	0,182	193
	190	16	2	4	9	0,125	0,250	0,563	0,444	0,222	
	0	21	4	-	10	0,190	-	0,476	-	0,400	
crl141b	30	20	3	-	11	0,150	-	0,550	-	0,273	193
	110	17	2	-	9	0,118	-	0,529	-	0,222	
	0	27	5	6	13	0,185	0,222	0,481	0,462	0,385	
	55	24	3	5	12	0,125	0,208	0,500	0,417	0,250	

Table 4: measurements of Streblites weinlandi (OPPEL, 1863) [m].

2

2

3

3

2

2

4

3

-

-

-

-

12

11

11

11

9

8

0,095

0,105

0,130

0,143

0,118

0,133

0,190

0,158

-

-

-

-

0,571

0,579

0,478

0,524

0,529

0,533

0,333

0,273

-

-

-

-

0,167

0,182

0,273

0,273

0,222

0,250

cru004

cru005

120

159

0

70

132

168

21

19

23

21

17

15

195

195

No.	α	D	U	W	Н	U/D	W/D	H/D	W/H	U/H	Bed n°
0(9	0	27	4	-	13	0,148	-	0,481	-	0,308	193/195
	70	23	3	-	11	0,130	-	0,478	-	0,273	
cru068	150	20	2	-	12	0,100	-	0,600	-	0,167	
	180	18	2	-	10	0,111	-	0,556	-	0,200	
	0	25	4	-	11	0,160	-	0,440	-	0,364	193/195
	90	20	3	-	10	0,150	-	0,500	-	0,300	
cru069	163	18	2	-	10	0,111	-	0,556	-	0,200	
	180	16	2	-	9	0,125	-	0,563	-	0,222	
	0	26	3	-	12	0,115	-	0,462	-	0,250	193
cru087	100	21	2	-	12	0,095	-	0,571	-	0,167	
	150	18	-	-	11	-	-	0,611	-	-	
	0	24	3	5	12	0,125	0,208	0,500	0,417	0,250	102
0221	90	20	2	4	12	0,100	0,200	0,600	0,333	0,167	
Cruosob	150	17	-	4	10	-	0,235	0,588	0,400	-	195
	180	15	-	3	9	-	0,200	0,600	0,333	-	

Table 5: measurements of Ochetoceras canaliferum (OPPEL, 1863).

No.	α	D	U	W	Н	U/D	H/D	U/H	Npr/2	Nsr/2	Bed n°
cr1001	0	67	10	-	35	0,149	0,522	0,286	7	-	193
	90	54	8	-	29	0,148	0,537	0,276	5	-	
	180	42	5	-	22	0,119	0,524	0,227	2	-	
cru033	0	63	8	-	35	0,127	0,556	0,229	7	38	193 ?
	53	53	7	-	29	0,132	0,547	0,241	5	35	
	95	47	6	-	26	0,128	0,553	0,231	7	31	
cru089	0	50	7	-	28	0,140	0,560	0,250	-	30	102
	65	41	6	-	23	0,146	0,561	0,261	2	29	
	142	35	4	-	19	0,114	0,543	0,211	0	-	193
	235	c28	3	-	14	0,107	0,500	0,214	0	-	